搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测

王晨阳 段倩倩 周凯 姚静 苏敏 傅意超 纪俊羊 洪鑫 刘雪芹 汪志勇

引用本文:
Citation:

基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测

王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇

A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm

Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong
PDF
HTML
导出引用
  • 光伏发电受天气与地理环境影响, 呈现出波动性和随机多干扰性, 其输出功率容易随着外界因素变化而变化, 因此预测发电输出功率对于优化光伏发电并网运行和减少不确定性的影响至关重要. 本文提出一种基于遗传算法(GA)优化的卷积长短记忆神经网络混合模型(GA-CNN-LSTM), 首先利用CNN模块对数据的空间特征提取, 再经过LSTM模块提取时间特征和附近隐藏状态向量, 同时通过GA优化LSTM训练网络的超参数权重与偏置值. 在初期对历史数据进行归一化处理, 以及对所有特征作灰色关联度分析, 提取重要特征降低数据计算复杂度, 然后对本文提出来的经GA优化后的CNN-LSTM混合神经网络(GA-CNN-LSTM)算法模型进行光伏功率预测实验. 同时与CNN, LSTM两个单一神经网络模型以及未经GA优化的CNN-LSTM混合神经网络模型的预测性能进行比较. 结果显示在平均绝对误差率(MAPE)指标下, 本文提出的GA-CNN-LSTM算法模型比单一神经网络模型最好的结果减少了1.537%的误差, 同时比未经优化的CNN-LSTM混合神经网络算法模型减少了0.873%的误差. 本文的算法模型对光伏发电功率具有更好的预测性能.
    Photovoltaic power generation is affected by weather and geographical environment, showing fluctuations and random multi-interference, and its output power is easy to change with changes in external factors. Therefore, the prediction of output power is crucial to optimize the grid-connected operation of photovoltaic power generation and reduce the impact of uncertainty. This paper proposes a hybrid model of both convolutional neural network (CNN) and long short-term memory neural network (LSTM) based on genetic algorithm (GA) optimization (GA-CNN-LSTM). First, the CNN module is used to extract the spatial features of the data, and then the LSTM module is used to extract the temporal features and nearby hidden states. Optimizing the hyperparameter weights and bias values of the LSTM training network through GA. At the initial stage, the historical data is normalized, and all features were analyzed by grey relational degree. Important features are extracted to reduce the computational complexity of the data. Then, the GA-optimized CNN-LSTM hybrid neural network model (GA-CNN-LSTM) is applied for photovoltaic power prediction experiment. The GA-CNN-LSTM model was compared with the single neural network models such as CNN and LSTM, and the CNN-LSTM hybrid neural network model without GA optimization. Under the Mean Absolute Percentage Error index, the GA-CNN-LSTM algorithm proposed in this paper reduces the error by 1.537% compared with the ordinary single neural network model, and 0.873% compared with the unoptimized CNN-LSTM hybrid neural network algorithm model. From the perspective of training and test running time, the GA-CNN-LSTM model takes a little longer than the single neural network model, but the disadvantage is not obvious. To sum up, the performance of GA-CNN-LSTM model for photovoltaic power predicting is better.
      通信作者: 刘雪芹, xqliu@cqut.edu.cn ; 汪志勇, zywang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774041)和重庆市基础与前沿研究计划项目(批准号: cstc2015jcyjA50033, cstc2015jcyjBX0056)资助的课题
      Corresponding author: Liu Xue-Qin, xqliu@cqut.edu.cn ; Wang Zhi-Yong, zywang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774041)and the Research Program of Basic Research and Frontier Technologyof Chongqing, China (Grant Nos. cstc2015jcyjA50033, cstc2015jcyjBX0056)
    [1]

    Wang K, Qi X, Liu H 2019 Appl. Energy 251 113315Google Scholar

    [2]

    Kushwaha V, Pindoriya N M 2019 RenewableEnergy 140 124Google Scholar

    [3]

    Shi J, Lee W J, Liu Y, Yang Y, Wang P 2012 IEEE Trans. Ind. Appl. 48 1064Google Scholar

    [4]

    Liu Y, Zhao J, Zhang M, et al. 2016 The 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Changsha, August, 2016 p29

    [5]

    Liu L, Zhao Y, Chang D, Xie J, Ma Z, Sun Q, Wennersten R 2018 Appl. Energy 228 70

    [6]

    Gao M, Li J, Hong F, Long D 2019 Energy 187 115

    [7]

    Abdel-Nasser M, Mahmoud K 2019 Neural Comput. Appl. 31 2727Google Scholar

    [8]

    魏小辉 2019 硕士学位论文 (兰州: 兰州大学)

    Wei X H 2019 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)

    [9]

    SrivastavaN, Hinton G, Krizhevsky A, et al. 2014 J. Mach. Learn Res. 15 1929

    [10]

    https://www.pkbigdata.com/common/cmptIndex.html[2019-12-20]

    [11]

    Ashburner J, Friston K J 1999 Hum. Brain Mapp. 7254

    [12]

    Wei G W 2011 Expert Syst. Appl. 38 4824Google Scholar

    [13]

    Wang K, Qi X, Liu H 2019 Energy 189 116225Google Scholar

    [14]

    Chua L O 1997 Int. J. Bifurcation Chaos 7 2219Google Scholar

    [15]

    SajjadM, Khan S, Hussain T, Muhammad K, Sangaiah A K, Castiglione A, Baik S W 2019 Pattern Recognit. Lett. 126 123Google Scholar

    [16]

    Xiao F, Xiao Y, Cao Z, Gong K, Fang Z, Zhou J T 2019 Tenth International Conference on Graphics and Image Processing, Chengdu, China, 2018 p11069

    [17]

    Hüsken M, Stagge P 2003 Neurocomputing 50 223Google Scholar

    [18]

    Qing X, Niu Y 2018 Energy 148 461Google Scholar

    [19]

    Ordóñez F, Roggen D 2016 Sensors 16 115Google Scholar

    [20]

    Tan Z X, Goel A, Nguyen T S, Ong D C 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, May 14−18, 2019 p1

    [21]

    Gensler A, Henze J, Sick B, et al. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, October 9−12, 2016 p002858

    [22]

    Zhou X, Wan X, Xiao J 2016 Proceedings of the 2016 Conference on Empirical Methods in Natural Laguage Proccessing, Texas, USA, November 1−5, 2016 p247

    [23]

    Goldberg D E, Samtani M P 1986 In Electronic Computation American Society of Civil Engineers, American, February 1986 p471

    [24]

    Willmott C J, Matsuura K 2005 Clim. Res. 30 79Google Scholar

    [25]

    Ip W C, Hu B Q, Wong H, Xia J 2009 J. Hydrol. 379 284Google Scholar

  • 图 1  CNN-LSTM混合算法模型

    Fig. 1.  CNN-LSTM hybrid algorithm model.

    图 2  一维卷积神经网络结构[14]

    Fig. 2.  One dimensional convolutional neural network structure.

    图 3  LSTM神经网络结构[17]

    Fig. 3.  LSTM neural network structure.

    图 4  遗传算法优化流程

    Fig. 4.  Optimization process of genetic algorithm.

    图 5  CNN模型预测功率图

    Fig. 5.  Power diagram of CNN model prediction.

    图 6  LSTM模型预测功率图

    Fig. 6.  Power diagram of LSTM model prediction.

    图 7  CNN-LSTM模型预测功率图

    Fig. 7.  Power diagram of CNN-LSTM model prediction.

    图 8  GA-CNN-LSTM模型预测功率图

    Fig. 8.  Power diagram of GA-CNN-LSTM model prediction.

    表 1  灰色关联度分析值

    Table 1.  Grey relational analysis value.

    变量特征风速风向温度压强湿度实发辐照度
    Y0.340.280.450.010.620.97
    下载: 导出CSV

    表 2  模型预测误差指标

    Table 2.  Error index of model prediction.

    模型CNNLSTMCNN-LSTMGA-CNN-LSTM
    MAE0.347650.366810.287630.21424
    MSE0.650340.634470.604370.58529
    RMSE0.806430.774310.693210.61213
    MAPE0.060130.062330.054390.04476
    下载: 导出CSV

    表 3  模型运行时间

    Table 3.  Model running time.

    模型CNNLSTM CNN-LSTMGA-CNN-LSTM
    训练时间/s456.43451.576611.880503.740
    测试时间/s1.1301.2203.6902.770
    下载: 导出CSV
  • [1]

    Wang K, Qi X, Liu H 2019 Appl. Energy 251 113315Google Scholar

    [2]

    Kushwaha V, Pindoriya N M 2019 RenewableEnergy 140 124Google Scholar

    [3]

    Shi J, Lee W J, Liu Y, Yang Y, Wang P 2012 IEEE Trans. Ind. Appl. 48 1064Google Scholar

    [4]

    Liu Y, Zhao J, Zhang M, et al. 2016 The 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Changsha, August, 2016 p29

    [5]

    Liu L, Zhao Y, Chang D, Xie J, Ma Z, Sun Q, Wennersten R 2018 Appl. Energy 228 70

    [6]

    Gao M, Li J, Hong F, Long D 2019 Energy 187 115

    [7]

    Abdel-Nasser M, Mahmoud K 2019 Neural Comput. Appl. 31 2727Google Scholar

    [8]

    魏小辉 2019 硕士学位论文 (兰州: 兰州大学)

    Wei X H 2019 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)

    [9]

    SrivastavaN, Hinton G, Krizhevsky A, et al. 2014 J. Mach. Learn Res. 15 1929

    [10]

    https://www.pkbigdata.com/common/cmptIndex.html[2019-12-20]

    [11]

    Ashburner J, Friston K J 1999 Hum. Brain Mapp. 7254

    [12]

    Wei G W 2011 Expert Syst. Appl. 38 4824Google Scholar

    [13]

    Wang K, Qi X, Liu H 2019 Energy 189 116225Google Scholar

    [14]

    Chua L O 1997 Int. J. Bifurcation Chaos 7 2219Google Scholar

    [15]

    SajjadM, Khan S, Hussain T, Muhammad K, Sangaiah A K, Castiglione A, Baik S W 2019 Pattern Recognit. Lett. 126 123Google Scholar

    [16]

    Xiao F, Xiao Y, Cao Z, Gong K, Fang Z, Zhou J T 2019 Tenth International Conference on Graphics and Image Processing, Chengdu, China, 2018 p11069

    [17]

    Hüsken M, Stagge P 2003 Neurocomputing 50 223Google Scholar

    [18]

    Qing X, Niu Y 2018 Energy 148 461Google Scholar

    [19]

    Ordóñez F, Roggen D 2016 Sensors 16 115Google Scholar

    [20]

    Tan Z X, Goel A, Nguyen T S, Ong D C 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, May 14−18, 2019 p1

    [21]

    Gensler A, Henze J, Sick B, et al. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, October 9−12, 2016 p002858

    [22]

    Zhou X, Wan X, Xiao J 2016 Proceedings of the 2016 Conference on Empirical Methods in Natural Laguage Proccessing, Texas, USA, November 1−5, 2016 p247

    [23]

    Goldberg D E, Samtani M P 1986 In Electronic Computation American Society of Civil Engineers, American, February 1986 p471

    [24]

    Willmott C J, Matsuura K 2005 Clim. Res. 30 79Google Scholar

    [25]

    Ip W C, Hu B Q, Wong H, Xia J 2009 J. Hydrol. 379 284Google Scholar

  • [1] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [2] 杨光, 钞苏亚, 聂敏, 刘原华, 张美玲. 面向图像分类的混合量子长短期记忆神经网络构建方法. 物理学报, 2023, 72(5): 058901. doi: 10.7498/aps.72.20221924
    [3] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 张航, 胡月姣, 陈嘉文, 修龙汪. 程能映射下配光平移群的深度神经网络实现. 物理学报, 2022, 71(13): 134201. doi: 10.7498/aps.71.20220178
    [6] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [7] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的复杂流场流动特性表征方法. 物理学报, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [8] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [9] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法. 物理学报, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [10] 李靖, 孙昊. 识别Z玻色子喷注的卷积神经网络方法. 物理学报, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [11] 黄伟建, 李永涛, 黄远. 基于混合神经网络和注意力机制的混沌时间序列预测. 物理学报, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [12] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [13] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [14] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜. 基于人工神经网络在线学习方法优化磁屏蔽特性参数. 物理学报, 2019, 68(13): 130701. doi: 10.7498/aps.68.20190234
    [15] 张旭东, 朱萍, 谢小平, 何国光. 混沌神经网络的动态阈值控制. 物理学报, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [16] 刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕, 杨正龙. 太阳能光伏-温差发电驱动的新型冰箱模型设计与热力学分析. 物理学报, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] 何国光, 曹志彤. 混沌神经网络的控制. 物理学报, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
    [19] 于丽娟, 朱长纯. 用人工神经网络预测场发射开启电场. 物理学报, 2000, 49(1): 170-173. doi: 10.7498/aps.49.170
    [20] 马余强, 张玥明, 龚昌德. Hopfield神经网络模型的恢复特性. 物理学报, 1993, 42(8): 1356-1360. doi: 10.7498/aps.42.1356
计量
  • 文章访问数:  10614
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 修回日期:  2020-02-06
  • 刊出日期:  2020-05-20

/

返回文章
返回