搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究

吴子华 谢华清

引用本文:
Citation:

聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究

吴子华, 谢华清

Study on the preparation and properties of polyparaphenylene/LiNi0.5Fe2O4 anocomposite thermoelectric materials

Wu Zi-Hua, Xie Hua-Qing
PDF
导出引用
  • 本文以流变相反应法原位合成了聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料,并对其热电性能进行表征,研究了放电等离子烧结时保温时间对其热电性能的影响.结果发现,复合材料铁氧体颗粒粒径为100300nm,其外部被一层聚对苯撑膜包覆.电子在Fe2+和Fe3+之间的跳跃机理在铁氧体电导中占主导作用,因此聚对苯撑/LiNi0.5Fe2O4复合材料具有n型导电特性.随着保温时间增加,复合材料电导率基本不变,但热导率逐渐增大且Seebeck系数逐渐减小,导致热电优值系数降低.由于结合了有机物高电导率和低热导率以及无机材料高赛贝克系数的优点,所制备的复合材料热电性能较单一材料有较大提高.
    Polyparaphenylene/LiNi-ferrite nanocomposites are prepared by a novel rheological phase reaction method. The thermoelectric properties of the as-prepared nanocomposites are characterized and the effect of spark plasma sintering (SPS) conditions is investigated. The TEM images show that the size of LiNi-ferrite is around 100300 nm and the polyparaphenylene has diffused boundaries outside it. The negative value of Seebeck coefficient confirms the n-type conduction, and the n-type conduction is attributed to hopping of electrons from Fe2+ to Fe3+ ions. It is found that the electrical conductivity of nanocomposite does not change with sintering time whereas the Seebeck coefficient decreases and thermal conductivity increases with sintering time. Therefore the figure of merit decreases. Because of the high electrical conductivity and low thermal conductivity of organic material and high Seebeck coefficient of inorganic material, the figure of merit of nanocomposites is improved.
    • 基金项目: 新世纪优秀人才计划(批准号:NCET-10-883);东方学者岗位计划资助的课题.
    • Funds: Project supported by the Program for New Century Excellent Talents in University (Grnat No. NCET-10-883), and Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.
    [1]

    Li J B, Li J F 2005 New Energy Materials and Application Technology (Beijing: Tsinghua University Press) p333345 (in Chinese) [李建保, 李敬锋 2005 新能源材料及其应用 第一版 (北京:清华大学出版社) 第333--345页]

    [2]
    [3]

    Majumdar A 2004 Science 303 777

    [4]
    [5]

    Pei Y Z, Yang J, Chen L D Zhang W Q, Salvador J R 2009 Appl. Phys. Lett. 95 042101

    [6]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章 2000 物理学报 49 1120]

    [7]
    [8]

    Wang Y Y, Cai K F, Yin J L, An B J, Du Y, Yao X 2011 J. Nanopart. Res. 13 533

    [9]
    [10]
    [11]

    Ohtaki M, Maehara S, Shinge S 2003 Proc. 22th Int. Conf. Thermoelectrics (France) 171

    [12]
    [13]

    Pichanusakorn P, Bandaru P 2010 Materials Science and Engineering R 67 19

    [14]

    Liu H, Wang J Y, Cui H M, Shi R J, Hu X B, Zi Z P 2004 Synth. Met. 145 75

    [15]
    [16]

    Hostler S R, Kaul P, Day K, Qu V, Cullen C, Abranson A R, Xiao F Q, Burda C 2006 Proceedings of the intersociety conference onthermomechanical phenomena in electric systems p14001405

    [17]
    [18]

    Pinter E, Fekete Z A, Berkesi O, Makra P, Patzko A, Visy C 2007 J. Phys. Chem. C 111 11872

    [19]
    [20]
    [21]

    Yu C, Kim Y S, Kim D, Grunlan J C 2008 Nano Lett. 8 4428

    [22]

    Hilli M F A, Li S, Kassim K S 2009 Materials Science and Engineering B 158 1

    [23]
    [24]
    [25]

    Patrakeev M V, Mitberg E B, Lakhtin A A, Leonidov I A, Kozhevnikov V L, Kharton V V, Avdeev M, Marques F M B 2002 Journal of Solid State Chemistry 167 203

    [26]

    Su X L, Tang X F, Li Y 2010 Acta Phys. Sin. 59 2860 (in Chinese)[苏贤礼, 唐新峰, 李涵 2010 物理学报 59 2860]

    [27]
    [28]

    Patrakeev, M V, Mitberg, E B, Lakhtin A A, Leonidov I A, Kozhevnikov V L, Kharton V V, Avdeev M, Marques F M B 2002 Journal of Solid State Chemistry 167 203

    [29]
    [30]

    Chen L D, Xiong Z, Bai S Q 2010 Journal of Inorganic Materials 25 561 (in Chinese) [陈立东, 熊震, 柏胜强 2010 无机材料学报 25 561]

    [31]
    [32]

    Zhang B, Sun J, Katz H E, Fang F, Opila R L 2010 ACS Applied Materials Interfaces 2 3170

    [33]
    [34]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [35]
    [36]
    [37]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. 93 7436

    [38]
    [39]

    Malen J A, Yee S K, Majumdar A, Segalman R A 2010 Chem.Phys. Lett. 491 109

    [40]
    [41]

    Jiang J, Li Y L, Xu G J, Cui P, Wu T, Chen L D, Wang G 2007 Acta Phys. Sin. 56 2858 (in Chinese) [蒋俊, 李亚丽, 许高杰, 崔平, 吴汀, 陈立东, 王刚 2007 物理学报 56 2858]

    [42]

    Liu X J 2007 Mater. Rev. 2 27 (in Chinese) [刘显杰 2007 材料导报网刊 2 27]

    [43]
    [44]

    Kharabe R G, Devan R S, Chougale B K 2008 Journal of Alloysand Compounds 463 67

    [45]
  • [1]

    Li J B, Li J F 2005 New Energy Materials and Application Technology (Beijing: Tsinghua University Press) p333345 (in Chinese) [李建保, 李敬锋 2005 新能源材料及其应用 第一版 (北京:清华大学出版社) 第333--345页]

    [2]
    [3]

    Majumdar A 2004 Science 303 777

    [4]
    [5]

    Pei Y Z, Yang J, Chen L D Zhang W Q, Salvador J R 2009 Appl. Phys. Lett. 95 042101

    [6]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章 2000 物理学报 49 1120]

    [7]
    [8]

    Wang Y Y, Cai K F, Yin J L, An B J, Du Y, Yao X 2011 J. Nanopart. Res. 13 533

    [9]
    [10]
    [11]

    Ohtaki M, Maehara S, Shinge S 2003 Proc. 22th Int. Conf. Thermoelectrics (France) 171

    [12]
    [13]

    Pichanusakorn P, Bandaru P 2010 Materials Science and Engineering R 67 19

    [14]

    Liu H, Wang J Y, Cui H M, Shi R J, Hu X B, Zi Z P 2004 Synth. Met. 145 75

    [15]
    [16]

    Hostler S R, Kaul P, Day K, Qu V, Cullen C, Abranson A R, Xiao F Q, Burda C 2006 Proceedings of the intersociety conference onthermomechanical phenomena in electric systems p14001405

    [17]
    [18]

    Pinter E, Fekete Z A, Berkesi O, Makra P, Patzko A, Visy C 2007 J. Phys. Chem. C 111 11872

    [19]
    [20]
    [21]

    Yu C, Kim Y S, Kim D, Grunlan J C 2008 Nano Lett. 8 4428

    [22]

    Hilli M F A, Li S, Kassim K S 2009 Materials Science and Engineering B 158 1

    [23]
    [24]
    [25]

    Patrakeev M V, Mitberg E B, Lakhtin A A, Leonidov I A, Kozhevnikov V L, Kharton V V, Avdeev M, Marques F M B 2002 Journal of Solid State Chemistry 167 203

    [26]

    Su X L, Tang X F, Li Y 2010 Acta Phys. Sin. 59 2860 (in Chinese)[苏贤礼, 唐新峰, 李涵 2010 物理学报 59 2860]

    [27]
    [28]

    Patrakeev, M V, Mitberg, E B, Lakhtin A A, Leonidov I A, Kozhevnikov V L, Kharton V V, Avdeev M, Marques F M B 2002 Journal of Solid State Chemistry 167 203

    [29]
    [30]

    Chen L D, Xiong Z, Bai S Q 2010 Journal of Inorganic Materials 25 561 (in Chinese) [陈立东, 熊震, 柏胜强 2010 无机材料学报 25 561]

    [31]
    [32]

    Zhang B, Sun J, Katz H E, Fang F, Opila R L 2010 ACS Applied Materials Interfaces 2 3170

    [33]
    [34]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [35]
    [36]
    [37]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. 93 7436

    [38]
    [39]

    Malen J A, Yee S K, Majumdar A, Segalman R A 2010 Chem.Phys. Lett. 491 109

    [40]
    [41]

    Jiang J, Li Y L, Xu G J, Cui P, Wu T, Chen L D, Wang G 2007 Acta Phys. Sin. 56 2858 (in Chinese) [蒋俊, 李亚丽, 许高杰, 崔平, 吴汀, 陈立东, 王刚 2007 物理学报 56 2858]

    [42]

    Liu X J 2007 Mater. Rev. 2 27 (in Chinese) [刘显杰 2007 材料导报网刊 2 27]

    [43]
    [44]

    Kharabe R G, Devan R S, Chougale B K 2008 Journal of Alloysand Compounds 463 67

    [45]
  • [1] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [2] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [3] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [4] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能. 物理学报, 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [5] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清. Ga掺杂对Cu3SbSe4热电性能的影响. 物理学报, 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [6] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [7] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [8] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [9] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律. 物理学报, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [10] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [11] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [12] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [13] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [14] 蒋 俊, 李亚丽, 许高杰, 崔 平, 吴 汀, 陈立东, 王 刚. 制备工艺对p型碲化铋基合金热电性能的影响. 物理学报, 2007, 56(5): 2858-2862. doi: 10.7498/aps.56.2858
    [15] 陈志彬, 黄美纯. 聚对苯撑及其烷氧基衍生物的能带研究. 物理学报, 2006, 55(8): 4337-4341. doi: 10.7498/aps.55.4337
    [16] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [17] 李 涵, 唐新峰, 刘桃香, 宋 晨, 张清杰. Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能. 物理学报, 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [18] 杨 磊, 张澜庭, 吴建生. 致密度对填充skutterudite化合物La0.75Fe3CoSb12热电性能的影响. 物理学报, 2004, 53(2): 537-542. doi: 10.7498/aps.53.537
    [19] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能. 物理学报, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
    [20] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为. 纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用. 物理学报, 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
计量
  • 文章访问数:  5896
  • PDF下载量:  759
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-21
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回