搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锯齿型石墨烯带缺陷改性方法研究

张嵛 刘连庆 焦念东 席宁 王越超 董再励

引用本文:
Citation:

锯齿型石墨烯带缺陷改性方法研究

张嵛, 刘连庆, 焦念东, 席宁, 王越超, 董再励

Modification of zigzag graphene nanoribbons by patterning vacancies

Zhang Yu, Liu Lian-Qing, Jiao Nian-Dong, Xi Ning, Wang Yue-Chao, Dong Zai-Li
PDF
导出引用
  • 采用基于密度泛函理论的非平衡格林函数, 对具有不同缺陷构型的锯齿型石墨烯带(zigzag graphene nanoribbon, ZGNR) 的输运性质进行了理论计算与模拟. 研究表明, 相同数目、 不同构型缺陷结构对ZGNR的导电特性将产生不同的影响. 如A-B构型双空缺对ZGNR电导的影响最为显著, 而A-A构型双空缺对其电导的影响最小. 更为重要的是, 当引入碳环构型缺陷时, ZGNR将被改性, 即由原本的金属性质转变为半导体性质, 为缺陷调控石墨烯导电特性提供了理论依据.
    The transport properties of zigzag graphene nanoribbons (ZGNRs) with different patterns of vacancies are investigated by using the density functional theory and nonequilibrium Green's function (NEGF) formalism. It is found that the transport properties vary with lattice type vacancy. For two vacancies, A-B type vacancies have the most significant influence on the conductance of ZGNRs, while A-A type vacancies have the most slightly influence on the conductance. More importantly, the pattern of vacancies has enormous influence on electron transport around the Femi energy. As hexagon carbons are removed, the ZGNRs will be modified, changing from metallic to semiconducting. This lays the theoretical foundation for tuning the electron properties of ZGNRs by patterning vacancies.
    • 基金项目: 国家自然科学基金(批准号: 60904095, 51050110445, 61175103)、 国家高技术研究发展计划(2009AA03Z316) 和中国科学院、 国家外国专家局创新团队国际合作伙伴计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Project Nos. 60904095, 51050110445, 61175103), the National High Technology Research and Development Program of China (Grant No. 2009AA03Z316), and the CAS FEA International Partnership Program for Creative Research Teams.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li X L, Wang X R, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [3]
    [4]

    Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [5]
    [6]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris Ph 2010 Science 327 662

    [7]
    [8]

    Grosse K L, Bae M H, Lian F, Pop E, King W P 2011 Nature Nanotechnology 6 287

    [9]
    [10]
    [11]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [12]

    Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndic M 2010 Nano Lett. 10 3163

    [13]
    [14]

    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A 2010 Nature 467 190

    [15]
    [16]

    Wang X, Zhi L J, Mllen K 2008 Nano Lett. 8 323

    [17]
    [18]

    Miler J R, Outlaw R A, Holloway B C 2010 Science 329 1637

    [19]
    [20]
    [21]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [22]
    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature (London) 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]
    [26]
    [27]

    Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida 2009 Phys. Rev. Lett. 94 082107

    [28]
    [29]

    Han M Y, Ozyilmaz B, Zhang Y, Kim Ph 2007 Phys. Rev. Lett. 98 206805

    [30]

    Tapaszto L, Dobrik G, Lambin Ph, Biro L P 2008 Nat Nanotechnol 3 397

    [31]
    [32]
    [33]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356

    [34]
    [35]

    Pan H J, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 [潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙 2010 物理学报 59 6443]

    [36]

    Ma L, Tan Z P. Tan C L, Liu G T, Yang C L, Lv L 2011 Acta Phys. Sin. 60 107302 [马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力 2011 物理学报 60 107302]

    [37]
    [38]

    Elias D C, Nair R R, Mohiuddin T M G., Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [39]
    [40]
    [41]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [42]
    [43]

    Boukhvalov D W, Katsnelson M I, Lichtenstein A I 2008 Phys. Rev. B 77 035427

    [44]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [45]
    [46]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [47]
    [48]

    Wang X R, Li X L, Zhang L, Yoon Y K, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [49]
    [50]
    [51]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [52]
    [53]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano. Lett. 7 2295

    [54]
    [55]

    Kan E J, Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [56]
    [57]

    Cervantes-Sodi F, Csanyi G, Piscanec S, Ferrari A C 2008 Phys. Rev. B 77 165427

    [58]
    [59]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [60]
    [61]

    KimW Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [62]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 [王雪梅, 刘红 2011 物理学报 60 047102]

    [63]
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li X L, Wang X R, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [3]
    [4]

    Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [5]
    [6]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris Ph 2010 Science 327 662

    [7]
    [8]

    Grosse K L, Bae M H, Lian F, Pop E, King W P 2011 Nature Nanotechnology 6 287

    [9]
    [10]
    [11]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [12]

    Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndic M 2010 Nano Lett. 10 3163

    [13]
    [14]

    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A 2010 Nature 467 190

    [15]
    [16]

    Wang X, Zhi L J, Mllen K 2008 Nano Lett. 8 323

    [17]
    [18]

    Miler J R, Outlaw R A, Holloway B C 2010 Science 329 1637

    [19]
    [20]
    [21]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [22]
    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature (London) 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]
    [26]
    [27]

    Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida 2009 Phys. Rev. Lett. 94 082107

    [28]
    [29]

    Han M Y, Ozyilmaz B, Zhang Y, Kim Ph 2007 Phys. Rev. Lett. 98 206805

    [30]

    Tapaszto L, Dobrik G, Lambin Ph, Biro L P 2008 Nat Nanotechnol 3 397

    [31]
    [32]
    [33]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356

    [34]
    [35]

    Pan H J, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 [潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙 2010 物理学报 59 6443]

    [36]

    Ma L, Tan Z P. Tan C L, Liu G T, Yang C L, Lv L 2011 Acta Phys. Sin. 60 107302 [马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力 2011 物理学报 60 107302]

    [37]
    [38]

    Elias D C, Nair R R, Mohiuddin T M G., Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [39]
    [40]
    [41]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [42]
    [43]

    Boukhvalov D W, Katsnelson M I, Lichtenstein A I 2008 Phys. Rev. B 77 035427

    [44]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [45]
    [46]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [47]
    [48]

    Wang X R, Li X L, Zhang L, Yoon Y K, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [49]
    [50]
    [51]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [52]
    [53]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano. Lett. 7 2295

    [54]
    [55]

    Kan E J, Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [56]
    [57]

    Cervantes-Sodi F, Csanyi G, Piscanec S, Ferrari A C 2008 Phys. Rev. B 77 165427

    [58]
    [59]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [60]
    [61]

    KimW Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [62]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 [王雪梅, 刘红 2011 物理学报 60 047102]

    [63]
  • [1] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221166
    [2] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [3] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [5] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [6] 陈艳秋. 氙等离子体输运性质计算. 物理学报, 2014, 63(20): 205201. doi: 10.7498/aps.63.205201
    [7] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [8] 王海兴, 孙素蓉, 陈士强. 双温度氦等离子体输运性质计算. 物理学报, 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [9] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究. 物理学报, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [10] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [11] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [12] 程莉, 汪丽莉, 蒲十周, 胡妮, 张悦, 刘雍, 魏伟, 熊锐, 石兢. 磁性和非磁性元素掺杂的自旋梯状化合物Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co)的结构和电输运性质. 物理学报, 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [13] 王晓坡, 宋渤, 吴江涛, 刘志刚. 基于反转法的O2-CO2 输运性质预测. 物理学报, 2010, 59(10): 7158-7163. doi: 10.7498/aps.59.7158
    [14] 徐跟建, 谭伟石, 曹辉, 邓开明, 吴小山. 非化学计量配比La0.67Sr0.33-x□xMnO3的结构和输运性质的研究. 物理学报, 2009, 58(1): 378-383. doi: 10.7498/aps.58.378
    [15] 欧阳方平, 王晓军, 张华, 肖金, 陈灵娜, 徐慧. 扶手椅型石墨纳米带的双空位缺陷效应研究. 物理学报, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [16] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究. 物理学报, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [17] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响. 物理学报, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [19] 曾 晖, 胡慧芳, 韦建卫, 谢 芳, 彭 平. 含有五边形—七边形缺陷的单壁纳米碳管的输运性质研究. 物理学报, 2006, 55(9): 4822-4827. doi: 10.7498/aps.55.4822
    [20] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
计量
  • 文章访问数:  4754
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-26
  • 修回日期:  2011-11-23
  • 刊出日期:  2012-07-05

锯齿型石墨烯带缺陷改性方法研究

  • 1. 中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 沈阳 110016;
  • 2. 中国科学院研究生院, 北京 100049;
  • 3. Department of Electrical and Computer Engineering, Michigan State University, East Lansing 48824, USA
    基金项目: 国家自然科学基金(批准号: 60904095, 51050110445, 61175103)、 国家高技术研究发展计划(2009AA03Z316) 和中国科学院、 国家外国专家局创新团队国际合作伙伴计划资助的课题.

摘要: 采用基于密度泛函理论的非平衡格林函数, 对具有不同缺陷构型的锯齿型石墨烯带(zigzag graphene nanoribbon, ZGNR) 的输运性质进行了理论计算与模拟. 研究表明, 相同数目、 不同构型缺陷结构对ZGNR的导电特性将产生不同的影响. 如A-B构型双空缺对ZGNR电导的影响最为显著, 而A-A构型双空缺对其电导的影响最小. 更为重要的是, 当引入碳环构型缺陷时, ZGNR将被改性, 即由原本的金属性质转变为半导体性质, 为缺陷调控石墨烯导电特性提供了理论依据.

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回