搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间飞行法测量光阱刚度的实验研究

周丹丹 任煜轩 刘伟伟 龚雷 李银妹

引用本文:
Citation:

时间飞行法测量光阱刚度的实验研究

周丹丹, 任煜轩, 刘伟伟, 龚雷, 李银妹

Calibration of optical tweezers using time of flight method

Zhou Dan-Dan, Ren Yu-Xuan, Liu Wei-Wei, Gong Lei, Li Yin-Mei
PDF
导出引用
  • 传统的测量光阱刚度的方法如功率谱法是基于微粒的布朗运动, 适用于直径范围几百纳米到几微米的微球, 在几微米以上并不具有明显优势.本文发展一种时间飞行的方法测量光阱对微球的刚度. 该方法是基于跟踪微粒的运动轨迹获得光阱刚度.通过比较不同功率下, 不同大小以及不同材料的微球的光阱刚度和误差, 结果表明时间飞行法适用于直径范围5-10 μm的微球; 论文中用功率谱法和均方位移法测量了5 μm标准聚苯乙烯小球的光阱刚度与时间飞行法测得的结果作为对比, 由于受相机采集速率的影响, 所测刚度值比理想值偏高, 比较而言, 时间飞行法的测量结果更加接近于真实值, 对于光阱刚度的快速标定有着重要意义. 该方法可以应用在特殊光场分布的激光阱中测量微球的光阱刚度; 在实现细胞层次的力学特性测量中它可避免使用微球作为探针, 为更深层次研究细胞上的复杂单分子过程提供了一个研究手段.
    Conventional method of calibrating optical trap stiffness is applicable for microspheres whose diameters range from hundreds of nanometer to several micrometers, but only have a slight advantage for those microspheres with diameters lager than five micrometers. To compensate this, we experimentally develop a time of flight method for measuring optical trap stiffness with larger microspheres. By comparing the optical trap stiffness of microspheres with different sizes and different materials at different laser powers, the time of flight method is confirmed to be more accurate and practical for microspheres larger than 5 μm; the result is of the same order of magnitude as the results of Brownian noise based analysis of 5 μm polystyrene bead. The results are higher than theoretical values due to the limited bandwidth of the camera. In comparison, the time of flight method is superior to other methods and does make sense in the fast calibration of optical trap stiffness on cell level. This method can be applied to optical traps with special field distributions. In the measurement of mechanical properties of cells, it can avoid using microspheres as force probe, thus providing a novel approach to the study of sophisticated single molecule process on the membrane of cells.
    • 基金项目: 国家自然科学基金(批准号: 21073174, 20974107, 31100555)、国家重大科学研究计划(批准号: 2011CB910402) 和中国科学院微重力重点实验室资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21073174, 20974107, 31100555), the National Basic Research Program of China (Grant No. 2011CB910402), and the Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences.
    [1]

    Zhou R B, Kunzelmann S, Webb M R, Ha T 2011 Nano Letters 11 5482

    [2]

    Morrison E A, DeKoster G T, Dutta S, Vafabakhsh R, Clarkson M W, Bahl A, Kern D, Ha T, Henzler-Wildman K A 2012 Nature 481 45

    [3]

    Qu X H, Wen J D, Lancaster L, Noller H F, Bustamante C, Tinoco I 2011 Nature 475 118

    [4]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [5]

    Ashikin A 1970Phys. Rev. Lett. 24 156

    [6]

    Wu J G, Li Y M, Lu D, Liu Z, Cheng Z D, He L Q 2009Cryo Lett. 30 89

    [7]

    Chen H D, Ge K K, Li Y M, Wu J G, Gu Y Q, Wei H M, Tian Z G 2007 Cellular & Molecular Immunology 4 221

    [8]

    Allersma M W, Gittes F, deCastro M J, Stewart R J, Schmidt C F 1998 Biophys. J. 74 1074

    [9]

    Ren Y X, Wu J G, Chen M, Li H, Li Y M 2010 Chin. Phys. Lett. 27 028703

    [10]

    Sirinakis G, Ren Y X, Gao Y, Xi Z Q, Zhang Y L 2012 Rev. Sci. Instrum. 83 093708

    [11]

    Grier D G 2003 Nature 424 810

    [12]

    Neuman K C, Block S M 2004 Rev. of Sci. Instru. 75 2787

    [13]

    van der Horst A, Forde N R 2010 Opt. Express 18 7670

    [14]

    Ren Y X, Wu J G, Zhong M C, Li Y M 2010 Chin. Opt. Lett. 8 170

    [15]

    Ren Y X, Wu J G, Li Y M Application of Monte Carlo Simulation in Optical Tweezers. In: Mordechai S, ed. Applications of Monte Carlo Method in Science and Engineering. Rijeka: Intech; 2011:21-34.

    [16]

    Wong W P, Halvorsen K 2006 Opt. Express 14 12517

    [17]

    Waggoner S N, Cornberg M, Selin L K 2011 Nature 481 394

    [18]

    Geissmann F, Manz M G, Jung S, Sieweke M H, Merad M, Ley K 2010 Science 327 656

    [19]

    Callan-Jones A, Sorre B, Bassereau P 2011 Cold Spring Harbor Perspectives in Biology 3

    [20]

    Roux A, Koster G, Lenz M, Sorre B, Manneville J B, Nassoy P 2010 Proc. Natl. Acad. Sci. 107 4141

    [21]

    Sorre B, Callan-Jones A, Manneville J B, Nassoy P, Joanny J F, Prost J, Goud B, Bassereau P 2009 Proc. Natl. Acad. Sci. 106 5622

    [22]

    Ashkin A 1992 Biophys. J. 61 569

    [23]

    Sun Q, RenY X, Yao K, Li Y M, Lu R D 2011 Chin. J.Laser 38 109003 (in Chinese) [孙晴, 任煜轩, 姚焜, 李银妹, 卢荣德 2011 中国激光 38 109003]

    [24]

    Gao H F, Ren Y X, Liu W W, Li Y M 2011 Chin. J.Laser 38 404002 (in Chinese) [高红芳, 任煜轩, 刘伟伟, 李银妹 2011 中国激光 38 404002]

    [25]

    Saunter C D 2010 Biophys. J. 98 1566

    [26]

    te Velthuis Aartjan J W, Kerssemakers Jacob W J, Lipfert J, Dekker N H 2010 Biophys. J. 99 1292

    [27]

    Liu W W, Ren Y X, Gao H F, Sun Q, Wang Z Q, Li Y M 2012 Acta Phys. Sin. 61 188701 (in Chinese) [刘伟伟, 任煜轩, 高红芳, 孙晴, 王自强, 李银妹2012物理学报 61 188701]

    [28]

    Rohrbach A 2005 Phys. Rev. Lett. 95 68102

    [29]

    Ren Y X 2012 Ph. D. Dissertation (hefei:University of Science and Technology of China) (in Chinese) [任煜轩2012 博士学位论文 (合肥:中国科学技术大学)]

    [30]

    Zhan Q W 2009 Advances in Optics and Photonics 1 1

    [31]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z G. 2011 Opt. Lett. 36 2883

    [32]

    Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D N, Chen Z G 2011 Opt. Lett. 36 1491

    [33]

    Ren Y X, Li M, Huang K, Wu J G, Gao H F, Wang Z Q, Li Y M 2010 Appl. Opt. 49 1838

    [34]

    Ren Y X, Wu J G, Zhou X W, Fu S J, Sun Q, Wang Z Q, Li Y M 2010 Acta Phys.Sin. 59 3930 (in Chinese) [任煜轩, 吴建光, 周小为, 付绍军, 孙晴, 王自强, 李银妹 2010 物理学报 59 3930]

    [35]

    Huang J, Zarnitsyna V I, Liu B Y, Edwards L J, Jiang N, Evavold B D, Zhu C 2010 Nature 464 932

    [36]

    Huppa J B, Axmann M, Mortelmaier M A, Lillemeier B F, Newell E W, Brameshuber M, Klein L O, Schutz G J, Davis M M 2010 Nature 463 963

  • [1]

    Zhou R B, Kunzelmann S, Webb M R, Ha T 2011 Nano Letters 11 5482

    [2]

    Morrison E A, DeKoster G T, Dutta S, Vafabakhsh R, Clarkson M W, Bahl A, Kern D, Ha T, Henzler-Wildman K A 2012 Nature 481 45

    [3]

    Qu X H, Wen J D, Lancaster L, Noller H F, Bustamante C, Tinoco I 2011 Nature 475 118

    [4]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [5]

    Ashikin A 1970Phys. Rev. Lett. 24 156

    [6]

    Wu J G, Li Y M, Lu D, Liu Z, Cheng Z D, He L Q 2009Cryo Lett. 30 89

    [7]

    Chen H D, Ge K K, Li Y M, Wu J G, Gu Y Q, Wei H M, Tian Z G 2007 Cellular & Molecular Immunology 4 221

    [8]

    Allersma M W, Gittes F, deCastro M J, Stewart R J, Schmidt C F 1998 Biophys. J. 74 1074

    [9]

    Ren Y X, Wu J G, Chen M, Li H, Li Y M 2010 Chin. Phys. Lett. 27 028703

    [10]

    Sirinakis G, Ren Y X, Gao Y, Xi Z Q, Zhang Y L 2012 Rev. Sci. Instrum. 83 093708

    [11]

    Grier D G 2003 Nature 424 810

    [12]

    Neuman K C, Block S M 2004 Rev. of Sci. Instru. 75 2787

    [13]

    van der Horst A, Forde N R 2010 Opt. Express 18 7670

    [14]

    Ren Y X, Wu J G, Zhong M C, Li Y M 2010 Chin. Opt. Lett. 8 170

    [15]

    Ren Y X, Wu J G, Li Y M Application of Monte Carlo Simulation in Optical Tweezers. In: Mordechai S, ed. Applications of Monte Carlo Method in Science and Engineering. Rijeka: Intech; 2011:21-34.

    [16]

    Wong W P, Halvorsen K 2006 Opt. Express 14 12517

    [17]

    Waggoner S N, Cornberg M, Selin L K 2011 Nature 481 394

    [18]

    Geissmann F, Manz M G, Jung S, Sieweke M H, Merad M, Ley K 2010 Science 327 656

    [19]

    Callan-Jones A, Sorre B, Bassereau P 2011 Cold Spring Harbor Perspectives in Biology 3

    [20]

    Roux A, Koster G, Lenz M, Sorre B, Manneville J B, Nassoy P 2010 Proc. Natl. Acad. Sci. 107 4141

    [21]

    Sorre B, Callan-Jones A, Manneville J B, Nassoy P, Joanny J F, Prost J, Goud B, Bassereau P 2009 Proc. Natl. Acad. Sci. 106 5622

    [22]

    Ashkin A 1992 Biophys. J. 61 569

    [23]

    Sun Q, RenY X, Yao K, Li Y M, Lu R D 2011 Chin. J.Laser 38 109003 (in Chinese) [孙晴, 任煜轩, 姚焜, 李银妹, 卢荣德 2011 中国激光 38 109003]

    [24]

    Gao H F, Ren Y X, Liu W W, Li Y M 2011 Chin. J.Laser 38 404002 (in Chinese) [高红芳, 任煜轩, 刘伟伟, 李银妹 2011 中国激光 38 404002]

    [25]

    Saunter C D 2010 Biophys. J. 98 1566

    [26]

    te Velthuis Aartjan J W, Kerssemakers Jacob W J, Lipfert J, Dekker N H 2010 Biophys. J. 99 1292

    [27]

    Liu W W, Ren Y X, Gao H F, Sun Q, Wang Z Q, Li Y M 2012 Acta Phys. Sin. 61 188701 (in Chinese) [刘伟伟, 任煜轩, 高红芳, 孙晴, 王自强, 李银妹2012物理学报 61 188701]

    [28]

    Rohrbach A 2005 Phys. Rev. Lett. 95 68102

    [29]

    Ren Y X 2012 Ph. D. Dissertation (hefei:University of Science and Technology of China) (in Chinese) [任煜轩2012 博士学位论文 (合肥:中国科学技术大学)]

    [30]

    Zhan Q W 2009 Advances in Optics and Photonics 1 1

    [31]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z G. 2011 Opt. Lett. 36 2883

    [32]

    Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D N, Chen Z G 2011 Opt. Lett. 36 1491

    [33]

    Ren Y X, Li M, Huang K, Wu J G, Gao H F, Wang Z Q, Li Y M 2010 Appl. Opt. 49 1838

    [34]

    Ren Y X, Wu J G, Zhou X W, Fu S J, Sun Q, Wang Z Q, Li Y M 2010 Acta Phys.Sin. 59 3930 (in Chinese) [任煜轩, 吴建光, 周小为, 付绍军, 孙晴, 王自强, 李银妹 2010 物理学报 59 3930]

    [35]

    Huang J, Zarnitsyna V I, Liu B Y, Edwards L J, Jiang N, Evavold B D, Zhu C 2010 Nature 464 932

    [36]

    Huppa J B, Axmann M, Mortelmaier M A, Lillemeier B F, Newell E W, Brameshuber M, Klein L O, Schutz G J, Davis M M 2010 Nature 463 963

  • [1] 白靖, 葛城显, 何浪, 刘轩, 吴振森. 椭圆波束对非均匀手征分层粒子的俘获特性研究. 物理学报, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [2] 耿俊娴, 李少强, 王诗琪, 黄春, 吕云杰, 胡睿, 屈军乐, 刘丽炜. 近红外光刺激神经细胞钙离子光激活. 物理学报, 2020, 69(15): 158701. doi: 10.7498/aps.69.20200489
    [3] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术. 物理学报, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [4] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [5] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测. 物理学报, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [6] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [7] 张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平. 红外显微观测被俘获吸光性颗粒. 物理学报, 2013, 62(20): 208702. doi: 10.7498/aps.62.208702
    [8] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [9] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究. 物理学报, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [10] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [11] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力. 物理学报, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [12] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [13] 杨 浩, 冯国英, 朱启华, 张大勇, 周寿桓. 聚焦光场俘获微球的FDTD分析. 物理学报, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [14] 曾夏辉, 吴逢铁, 刘 岚. 干涉理论对bottle beam的描述. 物理学报, 2007, 56(2): 791-797. doi: 10.7498/aps.56.791
    [15] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [16] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [17] 张艳丽, 赵逸琼, 詹其文, 李永平. 高数值孔径聚焦三维光链的研究. 物理学报, 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [18] 刘春香, 郭红莲, 降雨强, 李兆霖, 程丙英, 张道中. 光镊系统中光放大倍数对测量结果的影响. 物理学报, 2005, 54(3): 1162-1166. doi: 10.7498/aps.54.1162
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  7530
  • PDF下载量:  952
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-19
  • 修回日期:  2012-06-12
  • 刊出日期:  2012-11-05

时间飞行法测量光阱刚度的实验研究

  • 1. 中国科学技术大学光学与光学工程系, 合肥 230026
    基金项目: 国家自然科学基金(批准号: 21073174, 20974107, 31100555)、国家重大科学研究计划(批准号: 2011CB910402) 和中国科学院微重力重点实验室资助的课题.

摘要: 传统的测量光阱刚度的方法如功率谱法是基于微粒的布朗运动, 适用于直径范围几百纳米到几微米的微球, 在几微米以上并不具有明显优势.本文发展一种时间飞行的方法测量光阱对微球的刚度. 该方法是基于跟踪微粒的运动轨迹获得光阱刚度.通过比较不同功率下, 不同大小以及不同材料的微球的光阱刚度和误差, 结果表明时间飞行法适用于直径范围5-10 μm的微球; 论文中用功率谱法和均方位移法测量了5 μm标准聚苯乙烯小球的光阱刚度与时间飞行法测得的结果作为对比, 由于受相机采集速率的影响, 所测刚度值比理想值偏高, 比较而言, 时间飞行法的测量结果更加接近于真实值, 对于光阱刚度的快速标定有着重要意义. 该方法可以应用在特殊光场分布的激光阱中测量微球的光阱刚度; 在实现细胞层次的力学特性测量中它可避免使用微球作为探针, 为更深层次研究细胞上的复杂单分子过程提供了一个研究手段.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回