搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格中心插入体的对称性及取向对二维声子晶体带隙的影响

胡家光 徐文 肖宜明 张丫丫

引用本文:
Citation:

晶格中心插入体的对称性及取向对二维声子晶体带隙的影响

胡家光, 徐文, 肖宜明, 张丫丫

The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell

Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya
PDF
导出引用
  • 以二维钢/气体系声子晶体为模型,采用平面波法研究了圆柱正方及六角晶格中心添加插入体的对称性及取向与带隙的关系,给出了四方、六方、八方及圆柱插入体结构的带隙分布图及带隙随柱体取向的变化关系图.发现在低填充率条件下,插入体的截面形状与晶格类型相同时最有利于能带简并态的分离而获得带隙,但填充率较高时,采用高对称性的插入体可以获得最宽的带隙. 正方晶格中心插入体取向对带隙的影响要比在六角晶格中更为显著.对四方柱正方晶格声子晶体的研究表明, 仅旋转原柱体要比在其中心插入柱体后旋转更容易获得低频宽带隙, 单独运用添加柱体或旋转非圆柱体来降低晶格对称性以获取低频带隙的方法要比同时使用两种方法效果更好.此外,从机理上对计算结果进行了解释.
    The effects of symmetry and orientation of the additional steel rods on the band gaps of two-dimensional phononic crystals with steel-air system are numerically investigated by using the plane wave expansion method. The original steel rods of the phononic crystals are of columns in square and hexagonal lattices, and the additional steel rods are of regular square, hexagon, octagon prisms and columns, which are placed, respectively, in the center of each unit cell of the two kinds of lattices. The gap maps are introduced to illustrate the influences of the filling fraction and orientation of the additional rods on band gaps. It is found that in the case of the additional rods with low filling fraction, the band gaps can be obtained most easily because the degeneracy of bands is lifted when the cross section of additional rod has the same shape as that of lattice, but the widest band gaps appear under the condition of the additional rods with highest symmetry and largest filling fraction. The influence of orientation on band gap in square lattice is more obvious than that in hexagonal lattice. If the column lattice points are changed by square prisms in simple square lattice, the lower and wider band gaps can be produced by rotating the square prisms, which is contrary to the scenario that emerges in square lattice with additional rods at the center of unit cell. Using one of the methods of adding additional rods or rotating the original prisms is more beneficial to the generation of band gaps than combining effect of these two means in simple lattices. Furthermore, the mechanisms of above results are analyzed.
    • 基金项目: 国家自然科学基金(批准号: 10974206)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10974206).
    [1]

    Sigalas M M, Economou E N 1992 J. Sound Vib. 158 377

    [2]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [3]

    Martinez-Sala R, Sancho J, Sanchez J V, Gomez V, Llinares J, Meseguer F 1995 Nature 378 241

    [4]

    Zhang R Y, Jiang G S, Wang Z Q, Lü Y D 2006 Technical Acoustics 25 35 (in Chinese) [张荣英, 姜根山, 王璋奇, 吕亚东 2006 声学技术 25 35]

    [5]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [6]

    Yilmaz C, Hulbert G M, Kikuchi N 2007 Phys. Rev. B 76 054309

    [7]

    Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. on Microwave Theory and Tech. 47 2059

    [8]

    Li X L, Wu F G, Hu H F, Zhong S, Liu Y Y 2003 J. Phys. D: Appl. Phys. 36 L15

    [9]

    Wu F G, Liu Z Y, Liu Y Y 2002 Phys. Rev. E 66 046628

    [10]

    Caballero D, Sánchez-Dehesa J, Rubio C, Mártinez-Sala R, Sánchez-Pérez J V, Meseguer F, Llinares J 1999 Phys. Rev. E 60 R6316

    [11]

    Zhao F, Yuan L B 2005 Acta Phys. Sin. 54 4511 (in Chinese) [赵芳, 苑立波 2005 物理学报 54 4511]

    [12]

    Yao Y W, Hou Z L, Liu Y Y 2007 Phys. Lett. A 362 494

    [13]

    Xu Z L, Wu F G, Mu Z F, Zhang X, Yao Y W 2007 J. Phys. D: Appl. Phys. 40 5584

    [14]

    Dong H F, Wu F G, Mu Z F, Zhong H L 2010 Acta Phys. Sin. 59 754 (in Chinese) [董华锋, 吴福根, 牟中飞, 钟会林 2010 物理学报 59 754]

  • [1]

    Sigalas M M, Economou E N 1992 J. Sound Vib. 158 377

    [2]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [3]

    Martinez-Sala R, Sancho J, Sanchez J V, Gomez V, Llinares J, Meseguer F 1995 Nature 378 241

    [4]

    Zhang R Y, Jiang G S, Wang Z Q, Lü Y D 2006 Technical Acoustics 25 35 (in Chinese) [张荣英, 姜根山, 王璋奇, 吕亚东 2006 声学技术 25 35]

    [5]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [6]

    Yilmaz C, Hulbert G M, Kikuchi N 2007 Phys. Rev. B 76 054309

    [7]

    Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. on Microwave Theory and Tech. 47 2059

    [8]

    Li X L, Wu F G, Hu H F, Zhong S, Liu Y Y 2003 J. Phys. D: Appl. Phys. 36 L15

    [9]

    Wu F G, Liu Z Y, Liu Y Y 2002 Phys. Rev. E 66 046628

    [10]

    Caballero D, Sánchez-Dehesa J, Rubio C, Mártinez-Sala R, Sánchez-Pérez J V, Meseguer F, Llinares J 1999 Phys. Rev. E 60 R6316

    [11]

    Zhao F, Yuan L B 2005 Acta Phys. Sin. 54 4511 (in Chinese) [赵芳, 苑立波 2005 物理学报 54 4511]

    [12]

    Yao Y W, Hou Z L, Liu Y Y 2007 Phys. Lett. A 362 494

    [13]

    Xu Z L, Wu F G, Mu Z F, Zhang X, Yao Y W 2007 J. Phys. D: Appl. Phys. 40 5584

    [14]

    Dong H F, Wu F G, Mu Z F, Zhong H L 2010 Acta Phys. Sin. 59 754 (in Chinese) [董华锋, 吴福根, 牟中飞, 钟会林 2010 物理学报 59 754]

  • [1] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [2] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [3] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [4] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [5] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [6] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带. 物理学报, 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [7] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [8] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响. 物理学报, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [9] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [10] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [11] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [12] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [13] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [14] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [15] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [16] 王 刚, 温激鸿, 刘耀宗, 郁殿龙, 温熙森. 大弹性常数差二维声子晶体带隙计算中的集中质量法. 物理学报, 2005, 54(3): 1247-1252. doi: 10.7498/aps.54.1247
    [17] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [18] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [19] 齐共金, 杨盛良, 白书欣, 赵 恂. 基于平面波算法的二维声子晶体带结构的研究. 物理学报, 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
    [20] 庄飞, 吴良, 何赛灵. 用线性变换方法计算二维正方晶胞正n边形直柱光子晶体的带隙结构. 物理学报, 2002, 51(12): 2865-2870. doi: 10.7498/aps.51.2865
计量
  • 文章访问数:  6371
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-17
  • 修回日期:  2012-06-20
  • 刊出日期:  2012-12-05

晶格中心插入体的对称性及取向对二维声子晶体带隙的影响

  • 1. 云南大学物理科学技术学院, 昆明 650091;
  • 2. 文山学院数理系, 文山 663000
    基金项目: 国家自然科学基金(批准号: 10974206)资助的课题.

摘要: 以二维钢/气体系声子晶体为模型,采用平面波法研究了圆柱正方及六角晶格中心添加插入体的对称性及取向与带隙的关系,给出了四方、六方、八方及圆柱插入体结构的带隙分布图及带隙随柱体取向的变化关系图.发现在低填充率条件下,插入体的截面形状与晶格类型相同时最有利于能带简并态的分离而获得带隙,但填充率较高时,采用高对称性的插入体可以获得最宽的带隙. 正方晶格中心插入体取向对带隙的影响要比在六角晶格中更为显著.对四方柱正方晶格声子晶体的研究表明, 仅旋转原柱体要比在其中心插入柱体后旋转更容易获得低频宽带隙, 单独运用添加柱体或旋转非圆柱体来降低晶格对称性以获取低频带隙的方法要比同时使用两种方法效果更好.此外,从机理上对计算结果进行了解释.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回