搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SO+离子b4∑-态光谱常数和分子常数研究

邢伟 刘慧 施德恒 孙金锋 朱遵略

引用本文:
Citation:

SO+离子b4∑-态光谱常数和分子常数研究

邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略

Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation

Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe
PDF
导出引用
  • 采用考虑Davidson修正的内收缩多参考组态相互作用方法和相关一致基aug-cc-pV5Z, 在0.103—1.083 nm的核间距内计算了SO+ 离子b4∑-态的势能曲线. 采用态相互作用方法和非收缩全电子aug-cc-pCVTZ基组、 利用完全Breit-Pauli算符计算了旋轨耦合效应对光谱常数的影响. 为提高势能曲线和旋轨耦合常数的计算精度, 考虑了核价相关效应和相对论效应对势能曲线的影响. 核价相关效应是使用cc-pCVTZ基组计算的; 相对论效应是在cc-pV5Z基组水平上使用三级Douglas-Kroll-Hess哈密顿算符计算的. 利用得到的势能曲线, 计算了各种情况下的光谱常数, 并进行了详尽的分析和讨论. 结果表明: 在MRCI+Q/aug-cc-pV5Z+CV+DK理论水平获得的光谱常数总体上最接近实验值. 在MRCI+Q/aug-cc-pV5Z+CV+DK理论水平, 用全电子aug-cc-pCVTZ基组计算旋轨耦合修正时得到的旋轨耦合常数为1 cm-1. 利用MRCI+Q/aug-cc-pV5Z+CV+DK理论水平得到的势能曲线, 通过求解核运动的振转Schrödinger方程, 计算了无转动SO+离子b4∑-态前20个振动态的G(ν), Bν和Dν等分子常数. 其值与已有的实验结果一致. 本文得到的光谱常数和分子常数达到了很高精度, 能为进一步的光谱实验和理论研究提供可靠参考. 文中的大部分光谱常数和分子常数均属首次报道.
    The potential energy curve (PEC) of b4Σ- electronic state of the SO+ cation is calculated using the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI+Q) for internuclear separations from 0.103 to 1.083 nm. The basis set used is a correlation- consistent aug-cc-pV5Z basis set. The spin-orbit coupling effect on the spectroscopic parameters is taken into account by the state interaction approach with the full Breit-Pauli operator with all-electron basis set, aug-cc-pCVTZ. To improve the quality of PEC and spin-orbit coupling constant, core-valence correlation and relativistic corrections are included. Core-valence correlation correction is calculated using a cc-pCVTZ basis set. Relativistic corrections are included by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. At the MRCI+Q/aug-cc-pV5Z+CV+DK level, the spin-orbit coupling constant of the SO+ (b4Σ-1/2,3/2) is 1 cm-1 when the aug-cc-pCVTZ basis set is used for the spin-orbit coupling calculations The spectroscopic parameters are determined and compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. The vibrational level G(v) inertial rotation constant Bv and centrifugal distortion constant Dv are predicted for each vibrational state of the b4Σ- electronic state by solving the ro-vibrational Schrödinger equation of nuclear motion using Numerov's method and those of the first 2 vibrational states are reported for the non-rotation SO+ cation. Comparison with the measurements demonstrates that the present vibrational manifolds are both reliable and accurate. They should be good predictions for future experimental or theoretical research.
    • 基金项目: 国家自然科学基金(批准号: 10874064和61077073)、河南省高校科技创新人才支持计划(批准号: 2008HASTIT008)、河南省科技计划(批准号: 122300410303)和河南省教育厅自然科学基金(批准号: 2011C140002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064, 61077073), the Program for Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008 HASTIT008), the Program for Science & Technology of Henan Province in China (Grant No. 122300410303), and the Natural Science Foundation of Educational Bureau of Henan Province in China (Grant No. 2011C140002).
    [1]

    Woods R C 1988 Philos. Trans. R. Soc. Lond. A 324 141

    [2]

    Turner B E 1992 Astrophys. J. 396 L107

    [3]

    Turner B E 1994 Astrophys. J. 430 727

    [4]

    Turner B E 1996 Astrophys. J. 468 694

    [5]

    Marconi M L, Mendis D A, Mitchell D L, Lin R P, Korth A, Réme H 1991 Astrophys. J. 378 756

    [6]

    Kivelson M G, Khurana K K, Walker R J, Warnecke J, Russell C T, Linker J A, Southwood D J, Polanskey C 1996 Science. 274 396

    [7]

    Russell C T, Kivelson M G 2000 Science. 287 1998

    [8]

    Blanco-Cano X, Russell C T, Strangeway R J, Kivelson M G, Khurana K K 2001 Adv. Space Res. 28 1469

    [9]

    Houria A B, Lakhdar Z B, Hochlaf M 2006 J. Chem. Phys. 124 054313

    [10]

    Dyke J M, Golob L, Jonathan N, Morris A, Okuda M, Smith D J 1974 J. Chem. Soc. Faraday Trans. 270 1818

    [11]

    Tsuji M, Yamagiwa C, Endoh M, Nishimura Y 1980 Chem. Phys. Lett. 73 407

    [12]

    Murakami I, Tsuji M, Nishimura Y 1982 Chem. Phys. Lett. 92 131

    [13]

    Cossart D, Lavendy H, Robbe J M 1983 J. Mol. Spectrosc. 99 369

    [14]

    Coxon J A, Foster S C 1984 Mol. Spectrosc. 103 281

    [15]

    Hardwick J L, Luo Y, Winicur D H, Coxon J A 1984 Can. J. Phys. 62 1792

    [16]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1987 J. Chem. Phys. 86 1679

    [17]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1988 J. Mol. Spectrosc. 130 20

    [18]

    Dujardin G, Leach S 1981 J. Chem. Phys. 75 2521

    [19]

    Cosby P C 1984 J. Chem. Phys. 81 1102

    [20]

    Reddy R R, Reddy A S R 1986 J. Quant. Spectrosc. Radiat. Transf. 35 167

    [21]

    Norwood K, Ng C Y 1989 Chem. Phys. Lett. 156 145

    [22]

    Amano T, Warner H E 1991 J. Mol. Spectrosc. 146 519

    [23]

    Dyke J M, Haggerston D, Morris A, Stranges S, West J B, Wright T G, Wright A E 1997 J. Chem. Phys. 106 821

    [24]

    Li S, Zheng R, Huang G M, Duan C X 2008 J. Mol. Spectrosc. 252 22

    [25]

    Lam C S, Wang H L, Xu Y T, Lau K C, Ng C Y 2011 J. Chem. Phys. 134 144304

    [26]

    Chen J X, Deng L H, Shao X P, Chen Y, Zhang J L, Wu L, Chen Y Q, Yang X H 2009 Chem. Phys. Lett. 477 45

    [27]

    Klotz R, Marian C M, Peyerimhoff S D 1983 Chem. Phys. 76 367

    [28]

    Balaban A T, De Maré G R, Poirier R A 1989 J. Mol. Struct. Theochem 183 103

    [29]

    Ornellas F R, Borin A C 1998 J. Chem. Phys. 109 2202

    [30]

    Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 物理学报 56 4420]

    [31]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [32]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [35]

    Shi D H, Li W T, Zhang X N, Sun J F, Liu Y F, Zhu Z L, Wang J M 2011 J. Mol. Spectrosc. 266 27

    [36]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [37]

    Shi D H, Niu X H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 093105 (in Chinese) [施德恒, 牛相宏, 孙金锋, 朱遵略 2012 物理学报 61 093105]

    [38]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

    [39]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [40]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [41]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [42]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [43]

    Krogh J W, Lindh R, Malmqvist P Å, Roos B O, Veryazov V, Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)

    [44]

    de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 11448

    [45]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese) [陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 物理学报 59 4556]

    [46]

    Yan B, Liu L L, Wei C L, Guo J, Zhang Y J 2011 Chin. Phys. B 20 043101

    [47]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [48]

    Wang J M, Sun J F, Shi D H, Zhu Z L, Li W T 2012 Acta Phys. Sin. 61 063104 (in Chinese) [王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛 2012 物理学报 61 063104]

  • [1]

    Woods R C 1988 Philos. Trans. R. Soc. Lond. A 324 141

    [2]

    Turner B E 1992 Astrophys. J. 396 L107

    [3]

    Turner B E 1994 Astrophys. J. 430 727

    [4]

    Turner B E 1996 Astrophys. J. 468 694

    [5]

    Marconi M L, Mendis D A, Mitchell D L, Lin R P, Korth A, Réme H 1991 Astrophys. J. 378 756

    [6]

    Kivelson M G, Khurana K K, Walker R J, Warnecke J, Russell C T, Linker J A, Southwood D J, Polanskey C 1996 Science. 274 396

    [7]

    Russell C T, Kivelson M G 2000 Science. 287 1998

    [8]

    Blanco-Cano X, Russell C T, Strangeway R J, Kivelson M G, Khurana K K 2001 Adv. Space Res. 28 1469

    [9]

    Houria A B, Lakhdar Z B, Hochlaf M 2006 J. Chem. Phys. 124 054313

    [10]

    Dyke J M, Golob L, Jonathan N, Morris A, Okuda M, Smith D J 1974 J. Chem. Soc. Faraday Trans. 270 1818

    [11]

    Tsuji M, Yamagiwa C, Endoh M, Nishimura Y 1980 Chem. Phys. Lett. 73 407

    [12]

    Murakami I, Tsuji M, Nishimura Y 1982 Chem. Phys. Lett. 92 131

    [13]

    Cossart D, Lavendy H, Robbe J M 1983 J. Mol. Spectrosc. 99 369

    [14]

    Coxon J A, Foster S C 1984 Mol. Spectrosc. 103 281

    [15]

    Hardwick J L, Luo Y, Winicur D H, Coxon J A 1984 Can. J. Phys. 62 1792

    [16]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1987 J. Chem. Phys. 86 1679

    [17]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1988 J. Mol. Spectrosc. 130 20

    [18]

    Dujardin G, Leach S 1981 J. Chem. Phys. 75 2521

    [19]

    Cosby P C 1984 J. Chem. Phys. 81 1102

    [20]

    Reddy R R, Reddy A S R 1986 J. Quant. Spectrosc. Radiat. Transf. 35 167

    [21]

    Norwood K, Ng C Y 1989 Chem. Phys. Lett. 156 145

    [22]

    Amano T, Warner H E 1991 J. Mol. Spectrosc. 146 519

    [23]

    Dyke J M, Haggerston D, Morris A, Stranges S, West J B, Wright T G, Wright A E 1997 J. Chem. Phys. 106 821

    [24]

    Li S, Zheng R, Huang G M, Duan C X 2008 J. Mol. Spectrosc. 252 22

    [25]

    Lam C S, Wang H L, Xu Y T, Lau K C, Ng C Y 2011 J. Chem. Phys. 134 144304

    [26]

    Chen J X, Deng L H, Shao X P, Chen Y, Zhang J L, Wu L, Chen Y Q, Yang X H 2009 Chem. Phys. Lett. 477 45

    [27]

    Klotz R, Marian C M, Peyerimhoff S D 1983 Chem. Phys. 76 367

    [28]

    Balaban A T, De Maré G R, Poirier R A 1989 J. Mol. Struct. Theochem 183 103

    [29]

    Ornellas F R, Borin A C 1998 J. Chem. Phys. 109 2202

    [30]

    Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 物理学报 56 4420]

    [31]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [32]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [35]

    Shi D H, Li W T, Zhang X N, Sun J F, Liu Y F, Zhu Z L, Wang J M 2011 J. Mol. Spectrosc. 266 27

    [36]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [37]

    Shi D H, Niu X H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 093105 (in Chinese) [施德恒, 牛相宏, 孙金锋, 朱遵略 2012 物理学报 61 093105]

    [38]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

    [39]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [40]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [41]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [42]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [43]

    Krogh J W, Lindh R, Malmqvist P Å, Roos B O, Veryazov V, Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)

    [44]

    de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 11448

    [45]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese) [陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 物理学报 59 4556]

    [46]

    Yan B, Liu L L, Wei C L, Guo J, Zhang Y J 2011 Chin. Phys. B 20 043101

    [47]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [48]

    Wang J M, Sun J F, Shi D H, Zhu Z L, Li W T 2012 Acta Phys. Sin. 61 063104 (in Chinese) [王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛 2012 物理学报 61 063104]

  • [1] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [2] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [4] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [5] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数. 物理学报, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略, 吕淑霞. 一氟化碳电子态的光谱性质和预解离机理的理论研究. 物理学报, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [7] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [8] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [9] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质. 物理学报, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [10] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [12] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [13] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. 理论研究B2分子X3g-和A3u态的光谱性质. 物理学报, 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [15] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [16] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数. 物理学报, 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [19] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [20] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
计量
  • 文章访问数:  4950
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-28
  • 修回日期:  2012-07-10
  • 刊出日期:  2012-12-05

SO+离子b4∑-态光谱常数和分子常数研究

  • 1. 信阳师范学院物理电子工程学院, 信阳 464000;
  • 2. 河南师范大学物理与信息工程学院, 新乡 453007
    基金项目: 国家自然科学基金(批准号: 10874064和61077073)、河南省高校科技创新人才支持计划(批准号: 2008HASTIT008)、河南省科技计划(批准号: 122300410303)和河南省教育厅自然科学基金(批准号: 2011C140002)资助的课题.

摘要: 采用考虑Davidson修正的内收缩多参考组态相互作用方法和相关一致基aug-cc-pV5Z, 在0.103—1.083 nm的核间距内计算了SO+ 离子b4∑-态的势能曲线. 采用态相互作用方法和非收缩全电子aug-cc-pCVTZ基组、 利用完全Breit-Pauli算符计算了旋轨耦合效应对光谱常数的影响. 为提高势能曲线和旋轨耦合常数的计算精度, 考虑了核价相关效应和相对论效应对势能曲线的影响. 核价相关效应是使用cc-pCVTZ基组计算的; 相对论效应是在cc-pV5Z基组水平上使用三级Douglas-Kroll-Hess哈密顿算符计算的. 利用得到的势能曲线, 计算了各种情况下的光谱常数, 并进行了详尽的分析和讨论. 结果表明: 在MRCI+Q/aug-cc-pV5Z+CV+DK理论水平获得的光谱常数总体上最接近实验值. 在MRCI+Q/aug-cc-pV5Z+CV+DK理论水平, 用全电子aug-cc-pCVTZ基组计算旋轨耦合修正时得到的旋轨耦合常数为1 cm-1. 利用MRCI+Q/aug-cc-pV5Z+CV+DK理论水平得到的势能曲线, 通过求解核运动的振转Schrödinger方程, 计算了无转动SO+离子b4∑-态前20个振动态的G(ν), Bν和Dν等分子常数. 其值与已有的实验结果一致. 本文得到的光谱常数和分子常数达到了很高精度, 能为进一步的光谱实验和理论研究提供可靠参考. 文中的大部分光谱常数和分子常数均属首次报道.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回