搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类广义扰动KdV-Burgers方程的同伦近似解

洪宝剑 卢殿臣

引用本文:
Citation:

一类广义扰动KdV-Burgers方程的同伦近似解

洪宝剑, 卢殿臣

Homotopic approximate solutions for a class of generalized perturbed Kdv-Burgers equation

Hong Bao-Jian, Lu Dian-Chen
PDF
导出引用
  • 通过构造一个同伦映射, 研究了一类广义扰动KdV-Burgers方程. 在引入典型无扰动任意次广义KdV-Burgers方程扭状孤立波解的基础上, 研究了扰动方程的具有任意精度的近似解,指出了近似解级数的收敛性, 最后利用不动点定理,进一步说明近似解的有效性,并对精度进行了讨论.
    A class of generalized disturbed KdV-Burgers equation is studied by constructing a homotopy mapping. Based on the kinked solitary-wave solution of the corresponding typical undisturbed generalized KdV-Burgers equation with nonlinear terms of any order,the approximate solution with arbitrary degree of accuracy for the disturbed equation is researched. It is pointed out that the series of approximate solution is convergent. Finally,the efficiency and accuracy of the approximate solutions is also discussed by using the fixed point theorem.
    • 基金项目: 国家自然科学基金(批准号: 61070231);江苏省六大人才高峰杰出个人基金(批准号: 2009188);江苏省研究生培养创新工程基金(批准号: CXLX13673)和南京工程学院创新基金(批准号: CKJB201218)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61070231), the Outstanding Personal Program in Six Fields of Jiangsu Province, China (Grant No. 2009188), the Graduate Student Innovation Project of Jiangsu Province, China (Grant No. CXLX13_673), and the General Program of Innovation Foundation of NanJing Institute of Technology, China (Grant No. CKJB201218).
    [1]

    Ablowitz M J, Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scatting (New York: Cambridge University Press)

    [2]

    Fan E G 2000 Phys. Lett. A 265 353

    [3]

    Hong B J 2009 Appl. Math. Comput. 215 2908

    [4]

    Ren A D, He X J, Wang X L, Zhang L X 2012 Acta Phys. Sin. 61 060501 (in Chinese) [任爱娣, 何学军, 王晓林, 张良欣 2012 物理学报 61 060501]

    [5]

    Mo J Q 2011 Acta Phys. Sin. 60 020202 (in Chinese) [莫嘉琪 2011 物理学报 60 020202]

    [6]

    Wu Q K 2005 Acta Phys. Sin. 54 2510 (in Chinese) [吴钦宽 2005 物理学报 54 2510]

    [7]

    Tang R R 2012 Acta Phys. Sin. 61 200201 (in Chinese) [唐荣荣 2012 物理学报 61 200201]

    [8]

    Fu H S, Cao L, Han B 2004 Chinese J. Geophys. 55 2173 (in Chinese) [傅红笋, 曹莉, 韩波 2004 地球物理学报 55 2173]

    [9]

    Liao S J 2009 Commun Nonlinear Sci Numer Simulat. 14 983

    [10]

    Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203

    [11]

    Zhang Q C, Wang W, He X J 2008 Acta Phys. Sin. 57 5384 (in Chinese) [张琪昌, 王炜, 何学军 2008 物理学报 57 5384]

    [12]

    Li R Q, Li C B 2002 Acta Phys. Sin. 51 1743 (in Chinese) [李睿劬, 李存标 2002 物理学报 51 1743]

    [13]

    Shi Y R, Xu X J, Wu Z X 2006 Acta Phys. Sin. 55 1555 (in Chinese) [石玉仁, 许新建, 吴枝喜 2006 物理学报 55 1555]

    [14]

    Shi Y R, Yang H J 2010 Acta Phys. Sin. 59 0067 (in Chinese) [石玉仁, 杨红娟 2010 物理学报 59 0067]

    [15]

    Mo J Q, Yao J S 2008 Acta Phys. Sin. 57 7419 (in Chinese) [莫嘉琪, 姚静荪 2008 物理学报 57 7419]

    [16]

    Shi L F, Mo J Q 2009 Acta Phys. Sin. 58 8123 (in Chinese) [石兰芳, 莫嘉琪 2009 物理学报 58 8123]

    [17]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]

    [18]

    Wu Q K 2011 Acta Phys. Sin. 60 068802 (in Chinese) [吴钦宽 2011 物理学报 60 068802]

    [19]

    Ye W C, Li B, Wang J 2011 Acta Phys. Sin. 60 030207 (in Chinese) [叶望川, 李彪, 王佳 2011 物理学报 60 030207]

    [20]

    Naranmandula, Han Y C 2010 Acta Phys. Sin. 59 2942 (in Chinese) [那仁满都拉, 韩元春 2010 物理学报 59 2942]

    [21]

    Shi Y R, Zhang J, Yang H J, Duan W S 2011 Acta Phys. Sin. 60 020402 (in Chinese) [石玉仁, 张娟, 杨红娟, 段文山 2011 物理学报 60 020402]

    [22]

    Pan J T, Gong L X 2007 Acta Phys. Sin. 56 5585 (in Chinese) [潘军廷, 龚伦训 2007 物理学报 56 5585]

    [23]

    Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣, 洪宝剑, 田立新 2006 物理学报 55 5617]

    [24]

    L K P, Shi Y R, Duan W S, Zhao J B 2001 Acta Phys. Sin. 50 2073 (in Chinese) [吕克璞, 石玉仁, 段文山, 赵金保 2001 物理学报 50 2073]

    [25]

    Luwai W 2009 Commun Nonlinear Sci Numer Simul. 14 443

    [26]

    Zhang W G, Chang Q S, Jiang B G 2002 Chaos, Solitons and Fractals 13 311

    [27]

    Doğan Kaya 2004 Appl. Math. Comput. 152 709

    [28]

    Wang J 2010 Appl. Math. Comput. 217 1652

    [29]

    Hassan M M 2004 Chaos, Solitons and Fractals 19 1201

    [30]

    Li B, Chen Y, Zhang H Q 2003 Chaos, Solitons and Fractals 15 647

    [31]

    Liao S J 2004 Beyond Perturbati on: Introduction to the Homotopy Analysis Method (New York: CRC Press)

    [32]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)

  • [1]

    Ablowitz M J, Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scatting (New York: Cambridge University Press)

    [2]

    Fan E G 2000 Phys. Lett. A 265 353

    [3]

    Hong B J 2009 Appl. Math. Comput. 215 2908

    [4]

    Ren A D, He X J, Wang X L, Zhang L X 2012 Acta Phys. Sin. 61 060501 (in Chinese) [任爱娣, 何学军, 王晓林, 张良欣 2012 物理学报 61 060501]

    [5]

    Mo J Q 2011 Acta Phys. Sin. 60 020202 (in Chinese) [莫嘉琪 2011 物理学报 60 020202]

    [6]

    Wu Q K 2005 Acta Phys. Sin. 54 2510 (in Chinese) [吴钦宽 2005 物理学报 54 2510]

    [7]

    Tang R R 2012 Acta Phys. Sin. 61 200201 (in Chinese) [唐荣荣 2012 物理学报 61 200201]

    [8]

    Fu H S, Cao L, Han B 2004 Chinese J. Geophys. 55 2173 (in Chinese) [傅红笋, 曹莉, 韩波 2004 地球物理学报 55 2173]

    [9]

    Liao S J 2009 Commun Nonlinear Sci Numer Simulat. 14 983

    [10]

    Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203

    [11]

    Zhang Q C, Wang W, He X J 2008 Acta Phys. Sin. 57 5384 (in Chinese) [张琪昌, 王炜, 何学军 2008 物理学报 57 5384]

    [12]

    Li R Q, Li C B 2002 Acta Phys. Sin. 51 1743 (in Chinese) [李睿劬, 李存标 2002 物理学报 51 1743]

    [13]

    Shi Y R, Xu X J, Wu Z X 2006 Acta Phys. Sin. 55 1555 (in Chinese) [石玉仁, 许新建, 吴枝喜 2006 物理学报 55 1555]

    [14]

    Shi Y R, Yang H J 2010 Acta Phys. Sin. 59 0067 (in Chinese) [石玉仁, 杨红娟 2010 物理学报 59 0067]

    [15]

    Mo J Q, Yao J S 2008 Acta Phys. Sin. 57 7419 (in Chinese) [莫嘉琪, 姚静荪 2008 物理学报 57 7419]

    [16]

    Shi L F, Mo J Q 2009 Acta Phys. Sin. 58 8123 (in Chinese) [石兰芳, 莫嘉琪 2009 物理学报 58 8123]

    [17]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]

    [18]

    Wu Q K 2011 Acta Phys. Sin. 60 068802 (in Chinese) [吴钦宽 2011 物理学报 60 068802]

    [19]

    Ye W C, Li B, Wang J 2011 Acta Phys. Sin. 60 030207 (in Chinese) [叶望川, 李彪, 王佳 2011 物理学报 60 030207]

    [20]

    Naranmandula, Han Y C 2010 Acta Phys. Sin. 59 2942 (in Chinese) [那仁满都拉, 韩元春 2010 物理学报 59 2942]

    [21]

    Shi Y R, Zhang J, Yang H J, Duan W S 2011 Acta Phys. Sin. 60 020402 (in Chinese) [石玉仁, 张娟, 杨红娟, 段文山 2011 物理学报 60 020402]

    [22]

    Pan J T, Gong L X 2007 Acta Phys. Sin. 56 5585 (in Chinese) [潘军廷, 龚伦训 2007 物理学报 56 5585]

    [23]

    Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣, 洪宝剑, 田立新 2006 物理学报 55 5617]

    [24]

    L K P, Shi Y R, Duan W S, Zhao J B 2001 Acta Phys. Sin. 50 2073 (in Chinese) [吕克璞, 石玉仁, 段文山, 赵金保 2001 物理学报 50 2073]

    [25]

    Luwai W 2009 Commun Nonlinear Sci Numer Simul. 14 443

    [26]

    Zhang W G, Chang Q S, Jiang B G 2002 Chaos, Solitons and Fractals 13 311

    [27]

    Doğan Kaya 2004 Appl. Math. Comput. 152 709

    [28]

    Wang J 2010 Appl. Math. Comput. 217 1652

    [29]

    Hassan M M 2004 Chaos, Solitons and Fractals 19 1201

    [30]

    Li B, Chen Y, Zhang H Q 2003 Chaos, Solitons and Fractals 15 647

    [31]

    Liao S J 2004 Beyond Perturbati on: Introduction to the Homotopy Analysis Method (New York: CRC Press)

    [32]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)

  • [1] 汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解. 物理学报, 2014, 63(11): 110204. doi: 10.7498/aps.63.110204
    [2] 石兰芳, 周先春, 莫嘉琪. 一类大气浅水波系统的广义变分迭代行波近似解. 物理学报, 2013, 62(23): 230202. doi: 10.7498/aps.62.230202
    [3] 石兰芳, 林万涛, 林一骅, 莫嘉琪. 一类非线性方程类孤波的近似解法. 物理学报, 2013, 62(1): 010201. doi: 10.7498/aps.62.010201
    [4] 欧阳成, 石兰芳, 林万涛, 莫嘉琪. (2+1)维扰动时滞破裂孤波方程行波解的摄动方法. 物理学报, 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [5] 林万涛, 陈丽华, 欧阳成, 莫嘉琪. 厄尔尼诺/拉尼娜-南方涛动非线性扰动模型孤子的渐近解法. 物理学报, 2012, 61(8): 080204. doi: 10.7498/aps.61.080204
    [6] 杜增吉, 莫嘉琪. 一类扰动发展方程近似解. 物理学报, 2012, 61(15): 155202. doi: 10.7498/aps.61.155202
    [7] 谢峰, 林一骅, 林万涛, 莫嘉琪. 扰动厄尔尼诺/拉尼娜-南方涛动模型的解. 物理学报, 2011, 60(1): 010201. doi: 10.7498/aps.60.010201
    [8] 叶望川, 李彪, 王佳. Sinh-Gordon方程的同伦近似解. 物理学报, 2011, 60(3): 030207. doi: 10.7498/aps.60.030207
    [9] 吴钦宽. 输电线非线性振动问题的同伦映射近似解. 物理学报, 2011, 60(6): 068802. doi: 10.7498/aps.60.068802
    [10] 莫嘉琪, 陈贤峰. 一类非线性扰动Nizhnik-Novikov-Veselov系统的孤立波近似解析解. 物理学报, 2010, 59(5): 2919-2923. doi: 10.7498/aps.59.2919
    [11] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解. 物理学报, 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403
    [12] 周先春, 林万涛, 林一骅, 莫嘉琪. 一类扰动海-气耦合振子机理的近似解. 物理学报, 2010, 59(4): 2173-2177. doi: 10.7498/aps.59.2173
    [13] 石兰芳, 周先春. 一类扰动Burgers方程的孤子同伦映射解. 物理学报, 2010, 59(5): 2915-2918. doi: 10.7498/aps.59.2915
    [14] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解. 物理学报, 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [15] 林万涛, 莫嘉琪. 一类全球气候气-海耦合振子机理的近似解析解. 物理学报, 2008, 57(5): 2633-2637. doi: 10.7498/aps.57.2633
    [16] 莫嘉琪, 林万涛. 一类Lorenz系统的同伦映射解法. 物理学报, 2008, 57(11): 6694-6698. doi: 10.7498/aps.57.6694
    [17] 莫嘉琪, 姚静荪. 扰动KdV方程孤子的同伦映射解. 物理学报, 2008, 57(12): 7419-7422. doi: 10.7498/aps.57.7419
    [18] 莫嘉琪, 林万涛. 副热带圈和赤道太平洋年代际变更的海-气振子模型解的同伦映射方法. 物理学报, 2007, 56(10): 5565-5568. doi: 10.7498/aps.56.5565
    [19] 莫嘉琪, 林万涛. 一类大气浅水波方程的近似解. 物理学报, 2007, 56(7): 3662-3666. doi: 10.7498/aps.56.3662
    [20] 莫嘉琪, 王 辉, 林一骅. 广义Landau-Ginzburg-Higgs方程孤子解的扰动理论. 物理学报, 2005, 54(12): 5581-5584. doi: 10.7498/aps.54.5581
计量
  • 文章访问数:  3510
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-05
  • 修回日期:  2013-05-28
  • 刊出日期:  2013-09-05

一类广义扰动KdV-Burgers方程的同伦近似解

  • 1. 江苏大学理学院, 镇江 212013;
  • 2. 南京工程学院数理部, 南京 211167
    基金项目: 国家自然科学基金(批准号: 61070231);江苏省六大人才高峰杰出个人基金(批准号: 2009188);江苏省研究生培养创新工程基金(批准号: CXLX13673)和南京工程学院创新基金(批准号: CKJB201218)资助的课题.

摘要: 通过构造一个同伦映射, 研究了一类广义扰动KdV-Burgers方程. 在引入典型无扰动任意次广义KdV-Burgers方程扭状孤立波解的基础上, 研究了扰动方程的具有任意精度的近似解,指出了近似解级数的收敛性, 最后利用不动点定理,进一步说明近似解的有效性,并对精度进行了讨论.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回