搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BP+基态和激发态的势能曲线和光谱性质的研究

郭雨薇 张晓美 刘彦磊 刘玉芳

引用本文:
Citation:

BP+基态和激发态的势能曲线和光谱性质的研究

郭雨薇, 张晓美, 刘彦磊, 刘玉芳

Investigation on the potential energy curves and spectroscopic properties of the low-lying excited states of BP

Guo Yu-Wei, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang
PDF
导出引用
  • 本文利用量子化学中的多参考组态相互作用方法(MRCI), 在aug-cc-pVQZ级别计算了在环境科学中具有重要作用的离子BP+. 得到了对应三个离解极限B+(1Sg)+P(4Su), B+(1Sg)+P(2Du)以及B+(1Sg)+P(2Pu)的6个Λ-S态势能曲线. 在计算中还考虑了Davidson修正(+Q)和标量相对论效应, 用以提高计算精度. 通过分析Λ-S态的电子结构, 确认了电子态的多组态特性. 计算中首次纳入了旋轨耦合效应, 获得了由BP+离子的6个Λ-S态分裂出的10个Ω 态的势能曲线. 计算得到的势能曲线表明相同对称性的Ω 态的势能曲线存在着明显的避免交叉. 在得到的Λ-S态和Ω 态的势能曲线的基础上, 运用LEVEL8.0程序通过求解核径向的Schrödinger 方程, 得到了相应的Λ-S态和Ω 态的光谱常数Te, Re, ωe, ωeχe, Be和De, 其中基态X4∑-的光谱常数与已有的理论值符合的非常好, 文中其他电子态的光谱常数均为首次报道.
    The multi-reference configuration interaction (MRCI) method in quantum chemistry is used to investigate the BP+ at the level of aug-cc-pVQZ basis set. The potential energy curves of 6 Λ-S states of BP+ radical are obtained, which can be correlated to the dissociation limit B+(1Sg)+P(4Su), B+(1Sg)+P(2Du) and B+(1Sg)+P(2Pu). In order to get the accurate potential energy curves, the Davidson correction (+Q) and scalar relativistic effect are taken into consideration. Analyses of the electronic structures of Λ-S states demonstrate that the Λ-S electronic states are multi-configurational in nature. The spin-orbit interaction is considered for the first time sofar as we have, which makes 6 Λ-S states split to 10 Ω states. The calculation results show that the crossing between the Ω states of the same symmetry can be aveided. Then the spectroscopic constants of the bound Λ-S and Ω states are obtained by solving the radial Schrödinger equation with the program LEVEL8.0 according to the MRCI wave functions. By comparing with available experimental results, the spectroscopic constants of ground states are in good agreement with the available theoretical values. The remaining computational results in this paper are reported also for the first time.
    • 基金项目: 国家自然科学基金(批准号:11274096)和河南省创新型科技人才队伍建设工程(批准号:124200510013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274096), and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 124200510013).
    [1]

    Xu G L, Lv W J, Xiao X H, Zhang X Z, Liu Y F, Zhu Z L, Sun J F 2008 Acta Phys. Sin. 57 7577 (in Chinese) [徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋 2008 物理学报 57 7577]

    [2]

    Zhu Z H, Yu H G 1997 Molecular structure and potential energy functions (Beijing: Science Rress) p2 (in Chinese) [朱正和, 俞华根 1997 分子结构与分子式能函数 (北京: 科学出版社) 第2页]

    [3]

    Gingerich K A 1972 J. Chem. Phys. 56 4239

    [4]

    Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149

    [5]

    Boldyrev A I, Gonzales N, Simons J 1994 J. Phys. Chem. 98 6149

    [6]

    Gan Z, Grant D J, Harrisson R J, Dixon D A 2006 J. Chem. Phys. 125 124311

    [7]

    Chan G K, Handy N C 2000 J. Chem. Phys. 112 5639

    [8]

    Bruna P J, Grein F 2001 J. Phys. Chem. A 1053328

    [9]

    Burrill S, Grein F, 2005 J. Mol. Struct. (THEOCHEM) 757 137

    [10]

    Qu Y, Ma W, Bian X, Tang H, Tian W 2006 Int. J. Quantum Chem. 106 960

    [11]

    Roberto Linguerri, Najia Komiha, Rainer Oswald, Alexander Mitrushchenkova, Pavel Rosmusa 2008 Chem. Phys. 346 1

    [12]

    Gao F, Yang C L, Zhang X Y 2007 Acta Phys. Sin. 56 2547 (in Chinese) [高峰, 杨传路, 张晓燕 2007 物理学报 56 2547]

    [13]

    Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 物理学报 56 4420]

    [14]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 物理学报 58 6873]

    [15]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [16]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [17]

    Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 物理学报 53 423]

    [18]

    Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 物理学报 54 78]

    [19]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Eqation for Bound and Quasibound Levels. University of Waterloo Chemical Phsics Research Report CP-663

    [20]

    Zhang J P, Chen L, Shi D H 2008 J. At. Mol. Phys. 25 739 (in Chinese) [张金平, 陈丽, 施德恒 2008 原子与分子物理学报 25 739]

    [21]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [22]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 115 259

    [23]

    Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p212 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第212页]

    [24]

    Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]

    [25]

    Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102

    [26]

    Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p153 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第153页]

    [27]

    Moore C E 1971 Atomic energy levels (Washington, DC: National Bureau of Standards)

  • [1]

    Xu G L, Lv W J, Xiao X H, Zhang X Z, Liu Y F, Zhu Z L, Sun J F 2008 Acta Phys. Sin. 57 7577 (in Chinese) [徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋 2008 物理学报 57 7577]

    [2]

    Zhu Z H, Yu H G 1997 Molecular structure and potential energy functions (Beijing: Science Rress) p2 (in Chinese) [朱正和, 俞华根 1997 分子结构与分子式能函数 (北京: 科学出版社) 第2页]

    [3]

    Gingerich K A 1972 J. Chem. Phys. 56 4239

    [4]

    Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149

    [5]

    Boldyrev A I, Gonzales N, Simons J 1994 J. Phys. Chem. 98 6149

    [6]

    Gan Z, Grant D J, Harrisson R J, Dixon D A 2006 J. Chem. Phys. 125 124311

    [7]

    Chan G K, Handy N C 2000 J. Chem. Phys. 112 5639

    [8]

    Bruna P J, Grein F 2001 J. Phys. Chem. A 1053328

    [9]

    Burrill S, Grein F, 2005 J. Mol. Struct. (THEOCHEM) 757 137

    [10]

    Qu Y, Ma W, Bian X, Tang H, Tian W 2006 Int. J. Quantum Chem. 106 960

    [11]

    Roberto Linguerri, Najia Komiha, Rainer Oswald, Alexander Mitrushchenkova, Pavel Rosmusa 2008 Chem. Phys. 346 1

    [12]

    Gao F, Yang C L, Zhang X Y 2007 Acta Phys. Sin. 56 2547 (in Chinese) [高峰, 杨传路, 张晓燕 2007 物理学报 56 2547]

    [13]

    Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 物理学报 56 4420]

    [14]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 物理学报 58 6873]

    [15]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [16]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [17]

    Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 物理学报 53 423]

    [18]

    Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 物理学报 54 78]

    [19]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Eqation for Bound and Quasibound Levels. University of Waterloo Chemical Phsics Research Report CP-663

    [20]

    Zhang J P, Chen L, Shi D H 2008 J. At. Mol. Phys. 25 739 (in Chinese) [张金平, 陈丽, 施德恒 2008 原子与分子物理学报 25 739]

    [21]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [22]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 115 259

    [23]

    Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p212 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第212页]

    [24]

    Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]

    [25]

    Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102

    [26]

    Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p153 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第153页]

    [27]

    Moore C E 1971 Atomic energy levels (Washington, DC: National Bureau of Standards)

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [3] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [4] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [5] 李瑞, 张晓美, 李奇楠, 罗旺, 金明星, 徐海峰, 闫冰. SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究. 物理学报, 2014, 63(11): 113102. doi: 10.7498/aps.63.113102
    [6] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [7] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [8] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [11] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [12] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [13] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究. 物理学报, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [15] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [16] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [17] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [18] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  3067
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-21
  • 修回日期:  2013-06-24
  • 刊出日期:  2013-10-05

BP+基态和激发态的势能曲线和光谱性质的研究

  • 1. 河南师范大学, 物理与电子工程学院, 新乡 453007
    基金项目: 国家自然科学基金(批准号:11274096)和河南省创新型科技人才队伍建设工程(批准号:124200510013)资助的课题.

摘要: 本文利用量子化学中的多参考组态相互作用方法(MRCI), 在aug-cc-pVQZ级别计算了在环境科学中具有重要作用的离子BP+. 得到了对应三个离解极限B+(1Sg)+P(4Su), B+(1Sg)+P(2Du)以及B+(1Sg)+P(2Pu)的6个Λ-S态势能曲线. 在计算中还考虑了Davidson修正(+Q)和标量相对论效应, 用以提高计算精度. 通过分析Λ-S态的电子结构, 确认了电子态的多组态特性. 计算中首次纳入了旋轨耦合效应, 获得了由BP+离子的6个Λ-S态分裂出的10个Ω 态的势能曲线. 计算得到的势能曲线表明相同对称性的Ω 态的势能曲线存在着明显的避免交叉. 在得到的Λ-S态和Ω 态的势能曲线的基础上, 运用LEVEL8.0程序通过求解核径向的Schrödinger 方程, 得到了相应的Λ-S态和Ω 态的光谱常数Te, Re, ωe, ωeχe, Be和De, 其中基态X4∑-的光谱常数与已有的理论值符合的非常好, 文中其他电子态的光谱常数均为首次报道.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回