搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维势场中弹性耦合粒子的定向输运研究

吴魏霞 郑志刚

引用本文:
Citation:

二维势场中弹性耦合粒子的定向输运研究

吴魏霞, 郑志刚

Directed transport of elastically coupled particles in a two-dimensional potential

Wu Wei-Xia, Zheng Zhi-Gang
PDF
导出引用
  • 建立了二维势场中弹性耦合粒子的输运模型, 其中一维上加交流驱动及噪声, 另一维上不加驱动及噪声, 分析讨论了过阻尼情形下系统和外部参量对定向流的影响. 结果表明, 粒子可以通过相互耦合使一个方向上输入的驱动能量转化到垂直方向上, 从而使无能量输入的方向产生定向流. 适当的弹簧自由长度及耦合强度可以使定向流达到极值, 特别是当耦合强度及噪声强度固定时, 定向流会随弹簧自由长度的变化而振荡, 出现多峰现象. 研究还发现, 定向流随噪声强度的变化出现随机共振现象. 当产生定向流方向上的势的不对称度达到一定程度时会出现流反转现象.
    A transport model of elastically coupled particles in a two-dimensional potential is investigated. Here, we propose that one dimension of the model is exerted by an AC drive and an external noise, and the other dimension by neither AC drive nor external noise. The effects of system and external parameters on the directed current under an overdamped case are discussed. The studies show that particles can transfer energy from one direction to its perpendicular direction through coupling, thereby producing a directed current. There is an optimal value of the spring free length or the coupling intensity at which the directed current can reach a maximum. For a fixed coupling intensity or noise intensity, the directed current will oscillate as the free length of spring varies, that is, multiple peaks appear. Moreover, a stochastic resonance appears in the directed current as noise intensity varies. Finally, when the degree of asymmetry of the ratchet potential achieves a maximum value, the current reversion takes place.
    • 基金项目: 北京市教育委员会科技计划(批准号:KM201110015004);北京市属高等学校人才强教深化计划(批准号:PHR201108353);北京市优秀人才培养资助项目(批准号:2012D005004000005);国家自然科学基金(批准号:11075016)和高等学校博士学科点专项科研基金(批准号:20100003110007)资助的课题.
    • Funds: Project supported by the Science and Technology Project of Beijing Municipal Education Commission, China (Grant No. KM201110015004), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality, China (Grant No. PHR201108353), the Foundation of cultivating talents in Beijing City, China (Grant No. 2012D005004000005), the National Natural Science Foundation of China (Grant No. 11075016), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003110007).
    [1]

    Schnitzer M J, Block S M 1997 Nature 388 386

    [2]

    Asbury C L, Fehr A N, Block S M 2003 Science 302 2130

    [3]

    Coy D L, Wagenbach M, Howard J 1999 J. Biol. Chem. 274 3667

    [4]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p278 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第278页]

    [5]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [6]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative Sysmtem (Beijing: Science Press) p160 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第160页]

    [7]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114

    [8]

    Astumian R D 1997 Science 176 917

    [9]

    Li W, Guo H Y, Ji Q, Zhan Y, Zhao T J 2004 Acta Phys. Sin. 53 3684 (in Chinese) [李微, 郭鸿涌, 纪青, 展永, 赵同军 2004 物理学报 53 3684]

    [10]

    Shubeita G T, Tran S L, Xu J, Vershinin M, Cermelli S, Cotton S L, Welte M A, Gross S P 2008 Cell 135 1098

    [11]

    Mallik R, Petrov D, Lex S A, King S J, Gross S P 2005 Curr Biol. 15 2075

    [12]

    Hill D B, Plaza M J, Bonin K, Holzwarth G 2004 Eur Biophys J. 33 623

    [13]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501(in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [14]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [15]

    Zheng Z G, Liu F Z, Gao J 2003 Chin. Phys. 12 846

    [16]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [17]

    Xie P, Dou S X, Wang P Y 2004 Chin. Phys. 13 1569

    [18]

    Avik W G, Sanjay V K 2000 Phys. Rev. Lett. 84 5243

    [19]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228

    [20]

    Chen H B 2006 The Cooperative Transport in Deterministic Ratchets (Beijing: Beijing Normal University) [陈宏斌 2006 博士学位论文 (北京: 北京师范大学)]

    [21]

    Zheng Z G, Chen H B 2010 Europhys. Lett. 92 30004

    [22]

    Schott D H, Collins R N, Bretscher A 2002 J. Cell Biol. 156 35

    [23]

    Sakamoto T, Yildiz A, Selvin P R, Sellers J R 2005 Biochemistry 44 16203

    [24]

    Zhou C, Kurths J, Hu B 2001 Phys. Rev. Lett. 87 098101

  • [1]

    Schnitzer M J, Block S M 1997 Nature 388 386

    [2]

    Asbury C L, Fehr A N, Block S M 2003 Science 302 2130

    [3]

    Coy D L, Wagenbach M, Howard J 1999 J. Biol. Chem. 274 3667

    [4]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p278 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第278页]

    [5]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [6]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative Sysmtem (Beijing: Science Press) p160 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第160页]

    [7]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114

    [8]

    Astumian R D 1997 Science 176 917

    [9]

    Li W, Guo H Y, Ji Q, Zhan Y, Zhao T J 2004 Acta Phys. Sin. 53 3684 (in Chinese) [李微, 郭鸿涌, 纪青, 展永, 赵同军 2004 物理学报 53 3684]

    [10]

    Shubeita G T, Tran S L, Xu J, Vershinin M, Cermelli S, Cotton S L, Welte M A, Gross S P 2008 Cell 135 1098

    [11]

    Mallik R, Petrov D, Lex S A, King S J, Gross S P 2005 Curr Biol. 15 2075

    [12]

    Hill D B, Plaza M J, Bonin K, Holzwarth G 2004 Eur Biophys J. 33 623

    [13]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501(in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [14]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [15]

    Zheng Z G, Liu F Z, Gao J 2003 Chin. Phys. 12 846

    [16]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [17]

    Xie P, Dou S X, Wang P Y 2004 Chin. Phys. 13 1569

    [18]

    Avik W G, Sanjay V K 2000 Phys. Rev. Lett. 84 5243

    [19]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228

    [20]

    Chen H B 2006 The Cooperative Transport in Deterministic Ratchets (Beijing: Beijing Normal University) [陈宏斌 2006 博士学位论文 (北京: 北京师范大学)]

    [21]

    Zheng Z G, Chen H B 2010 Europhys. Lett. 92 30004

    [22]

    Schott D H, Collins R N, Bretscher A 2002 J. Cell Biol. 156 35

    [23]

    Sakamoto T, Yildiz A, Selvin P R, Sellers J R 2005 Biochemistry 44 16203

    [24]

    Zhou C, Kurths J, Hu B 2001 Phys. Rev. Lett. 87 098101

  • [1] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象. 物理学报, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [2] 王烨花, 何美娟. 高斯色噪声激励下非对称双稳耦合网络系统的随机共振. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220909
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [5] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [6] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [7] 谢天婷, 邓科, 罗懋康. 二维非对称周期时移波状通道中的粒子定向输运问题. 物理学报, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [8] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [9] 吴魏霞, 宋艳丽, 韩英荣. 二维耦合定向输运模型研究. 物理学报, 2015, 64(15): 150501. doi: 10.7498/aps.64.150501
    [10] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [11] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [12] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运. 物理学报, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [13] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象. 物理学报, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [14] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [15] 于海涛, 王江, 刘晨, 车艳秋, 邓斌, 魏熙乐. 耦合小世界神经网络的随机共振. 物理学报, 2012, 61(6): 068702. doi: 10.7498/aps.61.068702
    [16] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象. 物理学报, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [17] 林敏, 孟莹. 双稳系统的频率耦合与随机共振机理. 物理学报, 2010, 59(6): 3627-3632. doi: 10.7498/aps.59.3627
    [18] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性. 物理学报, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [19] 林 敏, 黄咏梅, 方利民. 耦合双稳系统的随机共振控制. 物理学报, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
    [20] 邵元智, 钟伟荣, 林光明, 李坚灿. 随机外磁场作用下Ising自旋体系的随机共振. 物理学报, 2004, 53(9): 3157-3164. doi: 10.7498/aps.53.3157
计量
  • 文章访问数:  3128
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-09
  • 修回日期:  2013-08-15
  • 刊出日期:  2013-10-05

二维势场中弹性耦合粒子的定向输运研究

  • 1. 北京印刷学院基础部, 北京 102600;
  • 2. 北京师范大学物理学系, 北京 100875
    基金项目: 北京市教育委员会科技计划(批准号:KM201110015004);北京市属高等学校人才强教深化计划(批准号:PHR201108353);北京市优秀人才培养资助项目(批准号:2012D005004000005);国家自然科学基金(批准号:11075016)和高等学校博士学科点专项科研基金(批准号:20100003110007)资助的课题.

摘要: 建立了二维势场中弹性耦合粒子的输运模型, 其中一维上加交流驱动及噪声, 另一维上不加驱动及噪声, 分析讨论了过阻尼情形下系统和外部参量对定向流的影响. 结果表明, 粒子可以通过相互耦合使一个方向上输入的驱动能量转化到垂直方向上, 从而使无能量输入的方向产生定向流. 适当的弹簧自由长度及耦合强度可以使定向流达到极值, 特别是当耦合强度及噪声强度固定时, 定向流会随弹簧自由长度的变化而振荡, 出现多峰现象. 研究还发现, 定向流随噪声强度的变化出现随机共振现象. 当产生定向流方向上的势的不对称度达到一定程度时会出现流反转现象.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回