搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非局域表面暗孤子及其稳定性分析

高星辉 唐冬 张承云 郑晖 陆大全 胡巍

引用本文:
Citation:

非局域表面暗孤子及其稳定性分析

高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍

Nonlocal surface dark solitons and their stability analysis

Gao Xing-Hui, Tang Dong, Zhang Cheng-Yun, Zheng Hui, Lu Da-Quan, Hu Wei
PDF
导出引用
  • 非局域体介质中的暗孤子及表面亮孤子由于在光通信领域的潜在应用而受到极大关注,然而到目前为止却没有对非局域表面暗孤子的研究. 在线性介质和非局域非线性介质的分界面上,数值模拟得到了1+1维非局域基态和二阶表面暗孤子,研究了它们的波形与传播常数和介质非局域程度的关系,基于它们的稳定性分析进行了理论推导和数值模拟. 稳定性分析结果表明:1+1维非局域基态表面暗孤子在其存在区域总是稳定的,而二阶表面暗孤子是区域不稳定的,其不稳定区域的宽度与传播常数以及介质的非局域程度有关系,且受传播常数的影响更大. 加噪声的初始输入传输图验证了稳定性分析结果的正确性.
    Due to their future applications in optical communication, nonlocal dark solitons in bulk medium and surface bright solitons have received much attention recently. However, nonlocal surface dark solitons have not been investigated till now. In this paper, 1+1 dimensional nonlocal fundamental and second-order surface dark solitons have been found numerically at the interface between thermal nonlinear medium and linear medium. The relation between the wave shape of nonlocal surface dark soliton and propagation constant and nonlocality degree is investigated. Moreover, the stability of them is analyzed theoretically. The numerical simulation results show that 1+1 dimensional nonlocal fundamental surface dark Solitons are always stable in the domain of their existence, while second-order surface dark solitons are oscillatorily unstable and the width of unstable domain depends more greatly on propagation constant than nonlocality degree of nonlocal nonlinear medium. The figure showing the propagation, with the initial input of noise added, confirms the correctness of stability analysis results.
    • 基金项目: 国家自然科学基金(批准号:11174090,11174091)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174090, 11174091).
    [1]

    Mitchell M, Segev M, Christodoulides D N 1998 Phys. Rev. Lett. 80 4657

    [2]

    Mamaev A V, Zozulya A A, Anderson D Z, Saffman M 1997 Phys. Rev. A 56 R1110

    [3]

    Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 1460

    [4]

    Peccianti M, Conti C C, Assanto G 2005 Opt. Lett. 30 415

    [5]

    Derrien F, Henninot F, Warenghem M, Abbate G 2000 J. Opt. A: Pure Appl. Opt. 2 332

    [6]

    Litvak A G, Mironov V A, Fraiman G M, Yunakovskii A D 1975 Sov. J. Plasmas Phys. 1 31

    [7]

    Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, Edmundson D 2004 J. Opt. B 6 S288

    [8]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286

    [9]

    Ouyang S, Guo Q 2009 Opt. Express 17 5170

    [10]

    Armaroli A, Trillo S, Fratalocchi A 2009 Phys. Rev. A 80 053803

    [11]

    Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese) [高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 物理学报 62 044214]

    [12]

    Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901

    [13]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]

    [14]

    Stegeman G I, Seaton C T 1985 J. Appl. Phys. 58 R57

    [15]

    Mihalache D, Bertolotti M, Sibilia C 1989 Prog. Opt. 27 229

    [16]

    Alfassi B, Rotschild C, Manela O, Segev M, Christ-odoulides D N 2007 Phys. Rev. Lett. 98 213901

    [17]

    Alfassi B, Rotschild C, Manela O, Segev M 2009 Phys. Rev. A 80 041808

    [18]

    Ye F, Kartashov Y V, Torner L 2008 Phys. Rev. A 77 033829

    [19]

    Kartashov Y V, Vysloukh V A, Torner L 2009 Opt. Lett. 34 283

    [20]

    Kartashov Y V, Vysloukh V A, Torner L 2007 Opt. Express 15 16216

    [21]

    Kartashov Y V, Ye F, Vysloukh V A, Torner L 2007 Opt. Lett. 32 2260

    [22]

    Skinner S R, Andersen D R 1991 J. Opt. Soc. Am. B 8 759

    [23]

    Chen Y J 1992 Phys. Rev. A 45 4974

    [24]

    Yang Z J, Ma X K, Lu D Q, Zheng Y Z, Gao X H, Hu W 2011 Opt. Express 19 4890

  • [1]

    Mitchell M, Segev M, Christodoulides D N 1998 Phys. Rev. Lett. 80 4657

    [2]

    Mamaev A V, Zozulya A A, Anderson D Z, Saffman M 1997 Phys. Rev. A 56 R1110

    [3]

    Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 1460

    [4]

    Peccianti M, Conti C C, Assanto G 2005 Opt. Lett. 30 415

    [5]

    Derrien F, Henninot F, Warenghem M, Abbate G 2000 J. Opt. A: Pure Appl. Opt. 2 332

    [6]

    Litvak A G, Mironov V A, Fraiman G M, Yunakovskii A D 1975 Sov. J. Plasmas Phys. 1 31

    [7]

    Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, Edmundson D 2004 J. Opt. B 6 S288

    [8]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286

    [9]

    Ouyang S, Guo Q 2009 Opt. Express 17 5170

    [10]

    Armaroli A, Trillo S, Fratalocchi A 2009 Phys. Rev. A 80 053803

    [11]

    Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese) [高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 物理学报 62 044214]

    [12]

    Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901

    [13]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]

    [14]

    Stegeman G I, Seaton C T 1985 J. Appl. Phys. 58 R57

    [15]

    Mihalache D, Bertolotti M, Sibilia C 1989 Prog. Opt. 27 229

    [16]

    Alfassi B, Rotschild C, Manela O, Segev M, Christ-odoulides D N 2007 Phys. Rev. Lett. 98 213901

    [17]

    Alfassi B, Rotschild C, Manela O, Segev M 2009 Phys. Rev. A 80 041808

    [18]

    Ye F, Kartashov Y V, Torner L 2008 Phys. Rev. A 77 033829

    [19]

    Kartashov Y V, Vysloukh V A, Torner L 2009 Opt. Lett. 34 283

    [20]

    Kartashov Y V, Vysloukh V A, Torner L 2007 Opt. Express 15 16216

    [21]

    Kartashov Y V, Ye F, Vysloukh V A, Torner L 2007 Opt. Lett. 32 2260

    [22]

    Skinner S R, Andersen D R 1991 J. Opt. Soc. Am. B 8 759

    [23]

    Chen Y J 1992 Phys. Rev. A 45 4974

    [24]

    Yang Z J, Ma X K, Lu D Q, Zheng Y Z, Gao X H, Hu W 2011 Opt. Express 19 4890

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子. 物理学报, 2023, 72(10): 104205. doi: 10.7498/aps.72.20230082
    [3] 李森清, 张肖, 林机. 熔融耦合器中耦合模式与新型孤子结构. 物理学报, 2022, 71(23): 234207. doi: 10.7498/aps.71.20221273
    [4] 李森清, 张肖, 林机. 非局域非线性耦合器中暗孤子的传输. 物理学报, 2021, 70(18): 184206. doi: 10.7498/aps.70.20210275
    [5] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [6] 黄光侨, 林机. 竞争非局域三次五次非线性介质中孤子的传输特性. 物理学报, 2017, 66(5): 054208. doi: 10.7498/aps.66.054208
    [7] 吴丹丹, 佘卫龙. 线性吸收介质非局域线性电光效应的耦合波理论. 物理学报, 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [8] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究. 物理学报, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [9] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性. 物理学报, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [10] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [11] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响. 物理学报, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [12] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [13] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析. 物理学报, 2012, 61(15): 154211. doi: 10.7498/aps.61.154211
    [14] 石玉仁, 张娟, 杨红娟, 段文山. mKdV方程的双扭结单孤子及其稳定性研究. 物理学报, 2010, 59(11): 7564-7569. doi: 10.7498/aps.59.7564
    [15] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性. 物理学报, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究. 物理学报, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性. 物理学报, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
计量
  • 文章访问数:  5052
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-22
  • 修回日期:  2013-10-24
  • 刊出日期:  2014-01-05

/

返回文章
返回