搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续波抽运气体波导产生太赫兹激光的理论研究

张会云 刘蒙 张玉萍 申端龙 吴志心 尹贻恒 李德华

引用本文:
Citation:

连续波抽运气体波导产生太赫兹激光的理论研究

张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华

Research of continuous wave pumping waveguide to generate terahertz laser

Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua
PDF
导出引用
  • 基于速率方程理论,建立了光抽运气体波导产生太赫兹(THz)激光的能量转化模型,理论分析并求解得到抽运光吸收系数、THz小信号增益系数以及THz输出功率表达式. 计算结果表明,THz输出功率随工作物质气压的升高先增加后逐渐减少,随抽运功率的增加、输出镜反射率的减小而增加;最佳工作气压随抽运功率的增大而增大;激发态粒子数以及THz光子通量随波导截面径向逐渐减小,而THz 小信号增益系数逐渐增加;抽运饱和、弱抽运吸收与激发态工作物质对THz 激光的吸收是限制激光转化效率提高的根源;基于该模型的计算结果与相关文献中的实验数据符合较好.
    This paper, based on the rate equation theory, astablishes a model for optical pump waveguides to generate terahertz laser. By analyzing and solving the rate equation, the expressions of pump absorption coefficient, terahertz small-signal gain coefficient and terahertz output power are obtained. The calculation shows that the THz power increases first and reduces gradually with the increase of pressure of the working material, and it will increase with the increase of pumping power and the decrease of the output mirror reflectivity. The best working pressure increases with the rise of the pumping power. The number of particles in the excited state and the THz flux increase in the waveguide radial direction from the center, while the small-signal gain coefficient shows the opposite trend. Pump saturation, weak pump absorption and excited state terahertz absorption are the primary cause limiting the increase of the laser conversion efficiency. Results based on this model are in good agreement with the data from the relevant literature.
    • 基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011)、山东科技大学杰出青年科学基金(批准号:2010KYJQ103)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)和山东科技大学科技创新基金(批准号:YCB120173)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011FM009, ZR2012FM011), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J11LG20), the Qingdao Science and Technology Project China (Grant No. 11-2-4-4-(8)-jch), the Shandong University of Science and Technology Foundation, China (Grant No. YCB120173)
    [1]

    Ferguson B, Zhang X C 2002 Nature 1 26

    [2]

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237 (in Chinese) [张显斌, 施卫 2006 物理学报 55 5237]

    [3]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802]

    [4]

    Cheo P K 1987 Handbook of Molecular Laser (New York: Marcel Dekker Inc.) pp497–636

    [5]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 024211

    [6]

    Tobin M S 1985 Proc. IEEE 73 61

    [7]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [8]

    Zhang T Y, Cao J C 2004 Chin. Phys. B 13 1742

    [9]

    Zhang C H, Wang Y Y, Gai B, Chen J, Tang L, Xu W W, Wu P H 2007 Cryogenics and Superconductivity 35 245 (in Chinese) [张彩虹, 王媛媛, 盖博, 陈健, 康琳, 许伟伟, 吴培亨 2007 低温与超导 35 245]

    [10]

    He Z H 2007 Ph. D. Dissertation (Tianjin; Tianjin University) (in Chinese) [何志红 2007 博士学位论文 (天津: 天津大学)]

    [11]

    Shen J E, Rong J, Liu W X 2006 Infrared and Laser Engineering 35 342 (in Chinese) [申金娥, 荣健, 刘文鑫 2006 激光与红外 35 342]

    [12]

    Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chinese Journal of Laser 36 2213 (in Chinese) [姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁鑫 2009 中国激光 36 2213]

    [13]

    Gregory S, Herman 1994 SPIE 2379 291

    [14]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. B 16 1459

    [15]

    Henningsen J O, Jensen H G 1975 IEEE J. Quantum Elect. 11 248

    [16]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [17]

    DeTemple T, Danielewicz E 1976 IEEE J. Quantum Elect. 12 40

    [18]

    Christenen C P, Freed C, Haus H A 1969 IEEE J. Quantum Elect. 5 276

    [19]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2010 Principles of Laser (Vol.6) (Beijing: National Defence Industry Press) pp123–158 (in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2010 激光原理 (第6版) (北京: 国防工业出版社) 第123–158 页]

    [20]

    Freund S M, Duxbury G, Romheld M, Tiedje J T, Oka T 1974 J. Mol. Spectrosc. 52 38

    [21]

    Weitz E, Flynn G W 1973 J. Chem. Phys. 58 2781

    [22]

    Frenkel L, Marantz H, Sullivan T 1971 Phys. Rev. A 3 1640

    [23]

    Abrams R L 1972 IEEE J. Quantum Elect. 8 838

    [24]

    Marcatili E A J, Schmeltzer R A 1964 Bell Syst. Tech. J. 62 1783

  • [1]

    Ferguson B, Zhang X C 2002 Nature 1 26

    [2]

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237 (in Chinese) [张显斌, 施卫 2006 物理学报 55 5237]

    [3]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802]

    [4]

    Cheo P K 1987 Handbook of Molecular Laser (New York: Marcel Dekker Inc.) pp497–636

    [5]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 024211

    [6]

    Tobin M S 1985 Proc. IEEE 73 61

    [7]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [8]

    Zhang T Y, Cao J C 2004 Chin. Phys. B 13 1742

    [9]

    Zhang C H, Wang Y Y, Gai B, Chen J, Tang L, Xu W W, Wu P H 2007 Cryogenics and Superconductivity 35 245 (in Chinese) [张彩虹, 王媛媛, 盖博, 陈健, 康琳, 许伟伟, 吴培亨 2007 低温与超导 35 245]

    [10]

    He Z H 2007 Ph. D. Dissertation (Tianjin; Tianjin University) (in Chinese) [何志红 2007 博士学位论文 (天津: 天津大学)]

    [11]

    Shen J E, Rong J, Liu W X 2006 Infrared and Laser Engineering 35 342 (in Chinese) [申金娥, 荣健, 刘文鑫 2006 激光与红外 35 342]

    [12]

    Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chinese Journal of Laser 36 2213 (in Chinese) [姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁鑫 2009 中国激光 36 2213]

    [13]

    Gregory S, Herman 1994 SPIE 2379 291

    [14]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. B 16 1459

    [15]

    Henningsen J O, Jensen H G 1975 IEEE J. Quantum Elect. 11 248

    [16]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [17]

    DeTemple T, Danielewicz E 1976 IEEE J. Quantum Elect. 12 40

    [18]

    Christenen C P, Freed C, Haus H A 1969 IEEE J. Quantum Elect. 5 276

    [19]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2010 Principles of Laser (Vol.6) (Beijing: National Defence Industry Press) pp123–158 (in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2010 激光原理 (第6版) (北京: 国防工业出版社) 第123–158 页]

    [20]

    Freund S M, Duxbury G, Romheld M, Tiedje J T, Oka T 1974 J. Mol. Spectrosc. 52 38

    [21]

    Weitz E, Flynn G W 1973 J. Chem. Phys. 58 2781

    [22]

    Frenkel L, Marantz H, Sullivan T 1971 Phys. Rev. A 3 1640

    [23]

    Abrams R L 1972 IEEE J. Quantum Elect. 8 838

    [24]

    Marcatili E A J, Schmeltzer R A 1964 Bell Syst. Tech. J. 62 1783

  • [1] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [2] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [3] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [4] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器. 物理学报, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [5] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [6] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [7] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究. 物理学报, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [8] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [9] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [10] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [11] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [12] 刘欢, 王巍, 巩马理. 角抽运Nd:YAG复合板条946 nm连续运转激光器 . 物理学报, 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [13] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [14] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [15] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [16] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [17] 王海艳, 赵国忠, 王新强. 不同抽运光强激发窄带隙半导体产生太赫兹辐射的研究. 物理学报, 2011, 60(4): 043202. doi: 10.7498/aps.60.043202
    [18] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [19] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [20] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
计量
  • 文章访问数:  3625
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-26
  • 修回日期:  2013-11-09
  • 刊出日期:  2014-01-05

连续波抽运气体波导产生太赫兹激光的理论研究

  • 1. 山东科技大学理学院, 青岛市太赫兹技术重点实验室, 青岛 266510
    基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011)、山东科技大学杰出青年科学基金(批准号:2010KYJQ103)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)和山东科技大学科技创新基金(批准号:YCB120173)资助的课题.

摘要: 基于速率方程理论,建立了光抽运气体波导产生太赫兹(THz)激光的能量转化模型,理论分析并求解得到抽运光吸收系数、THz小信号增益系数以及THz输出功率表达式. 计算结果表明,THz输出功率随工作物质气压的升高先增加后逐渐减少,随抽运功率的增加、输出镜反射率的减小而增加;最佳工作气压随抽运功率的增大而增大;激发态粒子数以及THz光子通量随波导截面径向逐渐减小,而THz 小信号增益系数逐渐增加;抽运饱和、弱抽运吸收与激发态工作物质对THz 激光的吸收是限制激光转化效率提高的根源;基于该模型的计算结果与相关文献中的实验数据符合较好.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回