搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响

徐大庆 张义门 娄永乐 童军

引用本文:
Citation:

热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响

徐大庆, 张义门, 娄永乐, 童军

Influences of post-heat treatment on microstructures, optical and magnetic properties of unintentionally doped GaN epilayers implanted with Mn ions

Xu Da-Qing, Zhang Yi-Men, Lou Yong-Le, Tong Jun
PDF
导出引用
  • 通过Mn离子注入非故意掺杂GaN外延层制备了GaN:Mn薄膜,并研究了退火温度对GaN:Mn薄膜的微结构、光学及磁学特性的影响. 对不同退火温度处理后的GaN:Mn薄膜的拉曼谱测试显示,出现了由与离子注入相关的缺陷的局域振动(LV)和(Ga,Mn)N中Mn离子的LV引起的新的声子模. 在GaN:Mn薄膜的光致发光谱中观察到位于2.16,2.53和2.92 eV 处的三个新发光峰(带),其中位于2.16 eV处的新发光带不能排除来自Mn相关辐射复合的贡献. 对GaN:Mn薄膜的霍尔测试显示,退火处理后样品表现出n型体材料特征. 对GaN:Mn薄膜的振动样品磁强计测试显示,GaN:Mn薄膜具有室温铁磁性,其强弱受Mn相关杂质带中参与调节磁相互作用的空穴浓度的影响.
    In this study, GaN:Mn thin films are fabricated by implementing Mn ions into the undoped GaN material. The effects of annealing temperature on microstructures, optical and magnetic properties of the thin films are investigated. The Raman spectra measured from Mn-implanted GaN samples at different annealing temperatures show that new phonon modes, which are related to macroscopic disorder or vacancy-related defects caused by Mn-ion implantation and the local vibrational mode of Mn atoms in the (Ga, Mn)N, are created. The results of photoluminescence measurement show that new peaks appear at 2.16, 2.53, and 2.92 eV. Among these, the new emission around 2.16 eV, besides some contributions from optical transitions from the conduction band or shallow donor to a deep acceptor, cannot exclude the contribution from optical transitions of free electrons in the conduction band to Mn acceptor level. The Hall test shows that the annealed samples are of n type. Ferromagnetism is observed in the Mn doped GaN thin film at 300 K and found to be sensitive to the density of holes that mediate the Mn-Mn magnetic exchange interaction in this Mn-related impurity band.
    • 基金项目: 陕西省教育厅科研计划项目(批准号:11JK0912)、西安科技大学科研培育基金(批准号:2010011)、西安科技大学博士科研启动基金(批准号:2010QDJ029)、国防预研基金(批准号:9140A08040410DZ106)和中央高等学校基本科研业务费(批准号:JY10000925005)资助的课题.
    • Funds: Project supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 11JK0912), the Scientific Research Training Foundation of Xi'an University of Science and Technology, China (Grant No. 2010011 ), the Staring Foundation of Scientific Research for the Doctor of Xi'an University of Science and Technology, China (Grant No. 2010QDJ029), the Advanced Research Foundation for National Defense of China (Grant No. 9140A08040410DZ106), and the Fundamental Scientific Research Fund for the Central Universities of China (Grant No. JY10000925005).
    [1]

    Ohno H, Manakata H, Penney T, von Molnár S, Chang L L 1992 Phys. Rev. Lett. 68 2664

    [2]

    Dietl T, Haury A, d'Aubigné Y M 1997 Phys. Rev. B 55 R3347

    [3]

    Ohno H 1998 Science 281 951

    [4]

    Hayashi T, Tanaka M, Seto K, Nishinaga T, Ando K 1997 Appl. Phys. Lett. 71 1825

    [5]

    Dietl T 2010 Nat. Mater. 9 965

    [6]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Reed M L, El-Masry N A, Stadelmaier H H, Ritums M K, Reed M J, Parker C A, Roberts J C, Bedair S M 2001 Appl. Phys. Lett. 79 3473

    [9]

    Husnain G, Yao S D, Ahmadb I, Rafique H M, Mahmoodd A 2012 J. Magn. Magn. Mater. 324 797

    [10]

    Kronik L, Jain M, Chelikowsky J R 2002 Phys. Rev. B 66 041203(R)

    [11]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [12]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [13]

    Huang R T, Hsu C F, Kai J J, Chen F R, Chin T S 2005 Appl. Phys. Lett. 87 202507

    [14]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [15]

    Xing H Y, Fan G H, Yang X L, Zhang G Y 2010 Acta Phys. Sin. 59 504 (in Chinese) [邢海英, 范广涵, 杨学林, 张国义 2010 物理学报59 504]

    [16]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C 2009 Chin. Phys. B 18 1637

    [17]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C, L H L, Tang X Y, Wang Y H 2008 Chin. Phys. B 17 4648

    [18]

    Reshchikov M A, Shahedipour F, Korotkov R Y, Wessels B W, Ulmer M P 2000 J. Appl. Phys. 87 3351

    [19]

    Korotkov R Y, Gregie J M, Wessels B W 2002 Appl. Phys. Lett. 80 1731

    [20]

    Kucheyev S O, Williams J S, Pearton S J 2001 Mater. Sci. Eng. R 33 51

    [21]

    Reshchikov M A, Morkoç H, Park S S, Lee K Y 2001 Appl. Phys. Lett. 78 3041

    [22]

    Neugebauer J, van de Walle C G 1996 Appl. Phys. Lett. 69 503

    [23]

    Mattila T, Nieminen R M 1997 Phys. Rev. B 55 9571

    [24]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301

    [25]

    Theodoropoulou M A N, Hebard A F, Overberg M E, Abernathy C R, Peartona S J, Chu S N G, Wilson R G 2001 Appl. Phys. Lett. 78 3475

  • [1]

    Ohno H, Manakata H, Penney T, von Molnár S, Chang L L 1992 Phys. Rev. Lett. 68 2664

    [2]

    Dietl T, Haury A, d'Aubigné Y M 1997 Phys. Rev. B 55 R3347

    [3]

    Ohno H 1998 Science 281 951

    [4]

    Hayashi T, Tanaka M, Seto K, Nishinaga T, Ando K 1997 Appl. Phys. Lett. 71 1825

    [5]

    Dietl T 2010 Nat. Mater. 9 965

    [6]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Reed M L, El-Masry N A, Stadelmaier H H, Ritums M K, Reed M J, Parker C A, Roberts J C, Bedair S M 2001 Appl. Phys. Lett. 79 3473

    [9]

    Husnain G, Yao S D, Ahmadb I, Rafique H M, Mahmoodd A 2012 J. Magn. Magn. Mater. 324 797

    [10]

    Kronik L, Jain M, Chelikowsky J R 2002 Phys. Rev. B 66 041203(R)

    [11]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [12]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [13]

    Huang R T, Hsu C F, Kai J J, Chen F R, Chin T S 2005 Appl. Phys. Lett. 87 202507

    [14]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [15]

    Xing H Y, Fan G H, Yang X L, Zhang G Y 2010 Acta Phys. Sin. 59 504 (in Chinese) [邢海英, 范广涵, 杨学林, 张国义 2010 物理学报59 504]

    [16]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C 2009 Chin. Phys. B 18 1637

    [17]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C, L H L, Tang X Y, Wang Y H 2008 Chin. Phys. B 17 4648

    [18]

    Reshchikov M A, Shahedipour F, Korotkov R Y, Wessels B W, Ulmer M P 2000 J. Appl. Phys. 87 3351

    [19]

    Korotkov R Y, Gregie J M, Wessels B W 2002 Appl. Phys. Lett. 80 1731

    [20]

    Kucheyev S O, Williams J S, Pearton S J 2001 Mater. Sci. Eng. R 33 51

    [21]

    Reshchikov M A, Morkoç H, Park S S, Lee K Y 2001 Appl. Phys. Lett. 78 3041

    [22]

    Neugebauer J, van de Walle C G 1996 Appl. Phys. Lett. 69 503

    [23]

    Mattila T, Nieminen R M 1997 Phys. Rev. B 55 9571

    [24]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301

    [25]

    Theodoropoulou M A N, Hebard A F, Overberg M E, Abernathy C R, Peartona S J, Chu S N G, Wilson R G 2001 Appl. Phys. Lett. 78 3475

  • [1] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [2] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [3] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [4] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [5] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [6] 叶颖惠, 吕斌, 张维广, 黄宏文, 叶志镇. Mn-Na共掺ZnO非极性薄膜的结构及其光电磁性能研究. 物理学报, 2012, 61(3): 036701. doi: 10.7498/aps.61.036701
    [7] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响. 物理学报, 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [8] 郑玉龙, 甄聪棉, 马丽, 李秀玲, 潘成福, 侯登录. Si-Al2O3复合薄膜的室温铁磁性. 物理学报, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [9] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [10] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [11] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [12] 周丽宏, 张崇宏, 李炳生, 杨义涛, 宋 银. 注入Ar+的蓝宝石晶体退火前后光致发光谱的分析. 物理学报, 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [13] 潘孝军, 张振兴, 王 涛, 李 晖, 谢二庆. 溅射制备纳米晶GaN∶Er薄膜的室温发光特性. 物理学报, 2008, 57(6): 3786-3790. doi: 10.7498/aps.57.3786
    [14] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [15] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变. 物理学报, 2006, 55(3): 1453-1457. doi: 10.7498/aps.55.1453
    [16] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [17] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [18] 宋淑芳, 周生强, 陈维德, 朱建军, 陈长勇, 许振嘉. 掺铒GaN薄膜的背散射/沟道分析和光致发光研究. 物理学报, 2003, 52(10): 2558-2562. doi: 10.7498/aps.52.2558
    [19] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  3307
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-09
  • 修回日期:  2013-10-31
  • 刊出日期:  2014-02-05

热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响

  • 1. 西安科技大学电气与控制工程学院, 西安 710054;
  • 2. 西安电子科技大学微电子学院, 宽禁带半导体材料与器件教育部重点实验室, 西安 710071
    基金项目: 陕西省教育厅科研计划项目(批准号:11JK0912)、西安科技大学科研培育基金(批准号:2010011)、西安科技大学博士科研启动基金(批准号:2010QDJ029)、国防预研基金(批准号:9140A08040410DZ106)和中央高等学校基本科研业务费(批准号:JY10000925005)资助的课题.

摘要: 通过Mn离子注入非故意掺杂GaN外延层制备了GaN:Mn薄膜,并研究了退火温度对GaN:Mn薄膜的微结构、光学及磁学特性的影响. 对不同退火温度处理后的GaN:Mn薄膜的拉曼谱测试显示,出现了由与离子注入相关的缺陷的局域振动(LV)和(Ga,Mn)N中Mn离子的LV引起的新的声子模. 在GaN:Mn薄膜的光致发光谱中观察到位于2.16,2.53和2.92 eV 处的三个新发光峰(带),其中位于2.16 eV处的新发光带不能排除来自Mn相关辐射复合的贡献. 对GaN:Mn薄膜的霍尔测试显示,退火处理后样品表现出n型体材料特征. 对GaN:Mn薄膜的振动样品磁强计测试显示,GaN:Mn薄膜具有室温铁磁性,其强弱受Mn相关杂质带中参与调节磁相互作用的空穴浓度的影响.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回