搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态电解质与电极界面的稳定性

冯吴亮 王飞 周星 吉晓 韩福东 王春生

引用本文:
Citation:

固态电解质与电极界面的稳定性

冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生

Stability of interphase between solid state electrolyte and electrode

Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng
PDF
HTML
导出引用
  • 相比于有机体系锂离子电池, 全固态锂金属电池有望同时提高电池安全性和能量密度, 因而受到广泛的研究和关注. 固态电解质的电化学窗口决定了电解质在高压电池充放电过程中是否保持稳定. 目前的固态电解质, 热力学稳定电化学窗口较窄, 限制了其与高电压正极以及锂金属负极的匹配. 因而能否形成动力学稳定的界面, 决定了全固态电池是否能够持续高效工作. 本文总结归纳了固态电解质的热力学稳定窗口的实验和理论计算研究进展, 并对提高界面稳定性的实验进展进行了简述. 在此基础上, 提出构建动力学稳定性界面及防止锂枝晶的思路, 并展望了全固态电池界面构建的研究方向.
    Compared with the lithium-ion battery based on the non-aqueous electrolyte, all-solid-state lithium battery has received much attention and been widely studied due to its superiority in both safety and energy density. The electrochemical window of solid electrolyte determines whether the electrolyte remains stable during the cycling of the high-voltage battery. Current solid electrolytes typically have narrow electrochemical windows, thereby limiting their coupling with high voltage cathodes and lithium metal anode. Therefore, the formation of the stable interphase determines the stabilities of the all-solid-state batteries. Here in this work, both the experimental and theoretical progress of the electrochemical stability window of solid-state electrolytes are summarized. Besides, the experimental achievements in improving the stability of the interphase are also mentioned. On this basis, the strategies of constructing dynamically stable interphase and preventing the lithium dendrite branch crystal from forming are put forward. The future research direction of the interphase construction in all-solid-state batteries is also presented.
      通信作者: 王飞, feiw@fudan.edu.cn ; 王春生, cswang@umd.edu
      Corresponding author: Wang Fei, feiw@fudan.edu.cn ; Wang Chun-Sheng, cswang@umd.edu
    [1]

    Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928Google Scholar

    [2]

    Janek J, Zeier W G 2016 Nat. Energy 1 1Google Scholar

    [3]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [4]

    Goodenough J B 2012 J. Solid State Electrochem. 16 2019Google Scholar

    [5]

    Soloveichik G L 2014 Nature 505 163

    [6]

    Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167Google Scholar

    [7]

    Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219Google Scholar

    [8]

    López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56Google Scholar

    [9]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513Google Scholar

    [10]

    Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945Google Scholar

    [11]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [12]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar

    [13]

    Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775Google Scholar

    [14]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [15]

    Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428Google Scholar

    [16]

    Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016Google Scholar

    [17]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [18]

    Rabenau A 1982 Solid State Ionics 6 277Google Scholar

    [19]

    Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534Google Scholar

    [20]

    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627

    [21]

    Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008Google Scholar

    [22]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682

    [23]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473Google Scholar

    [24]

    Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342Google Scholar

    [25]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [26]

    Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276Google Scholar

    [27]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [28]

    Xu K 2014 Chem. Rev. 114 11503Google Scholar

    [29]

    Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208Google Scholar

    [30]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar

    [31]

    Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119Google Scholar

    [32]

    Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707Google Scholar

    [33]

    Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2Google Scholar

    [34]

    Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029Google Scholar

    [35]

    Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9Google Scholar

    [36]

    Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016Google Scholar

    [37]

    Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510Google Scholar

    [38]

    Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035Google Scholar

    [39]

    Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764Google Scholar

    [40]

    Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91Google Scholar

    [41]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [42]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042Google Scholar

    [43]

    He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24Google Scholar

    [44]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar

    [45]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565Google Scholar

    [46]

    Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853Google Scholar

    [47]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [48]

    Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90Google Scholar

    [49]

    Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192Google Scholar

    [50]

    Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44Google Scholar

    [51]

    Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179Google Scholar

    [52]

    Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454Google Scholar

    [53]

    Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414Google Scholar

    [54]

    Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771Google Scholar

    [55]

    Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar

    [56]

    Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939Google Scholar

    [57]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar

    [58]

    Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138Google Scholar

    [59]

    Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888Google Scholar

    [60]

    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883Google Scholar

    [61]

    Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21Google Scholar

    [62]

    Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750Google Scholar

    [63]

    Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328Google Scholar

    [64]

    Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar

    [65]

    Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98Google Scholar

    [66]

    Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1Google Scholar

    [67]

    de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609Google Scholar

    [68]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [69]

    McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [70]

    Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071Google Scholar

    [71]

    Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458Google Scholar

    [72]

    Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115Google Scholar

    [73]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar

    [74]

    Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719Google Scholar

    [75]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [76]

    Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665Google Scholar

    [77]

    Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412Google Scholar

    [78]

    Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431Google Scholar

    [79]

    Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar

    [80]

    Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar

    [81]

    Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53Google Scholar

    [82]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [83]

    Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972Google Scholar

    [84]

    Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [85]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212Google Scholar

    [86]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [87]

    Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610Google Scholar

    [88]

    Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190Google Scholar

    [89]

    Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7Google Scholar

    [90]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar

    [91]

    Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261Google Scholar

    [92]

    Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73Google Scholar

    [93]

    Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418Google Scholar

  • 图 1  (a) 传统固体电解质的循环扫描伏安法测试装置示意图; (b) LGPS[22], (c) LLZO[24]以及(d) Li2OHCl[31]电解质传统CV测试曲线

    Fig. 1.  (a) Schematic diagram of conventional cyclic scanning voltammetry device for solid-state electrolyte; CV testing curves for (b) LGPS[22], (c) LLZO[24] and Li2OHCl[31] solid-state electrolyte.

    图 2  电解质电化学窗口测试装置结构示意图

    Fig. 2.  Schematic diagram of the testing device for the electrochemical stability window.

    图 3  三类电解质/电极界面化学稳定性示意图

    Fig. 3.  Schematic diagram of chemical stability of the three kinds of electrolyte/electrode interfaces.

    图 4  (a) 氮化硼(BN)中间层稳定LATP/Li[37]与(b) LiF中间层稳定LPSCl/Li[38]界面示意图

    Fig. 4.  Schematic diagram of the (a) LATP/Li interface stabilization by BN[37] and (b) LPSCl/Li interface stabilization by LiF[38], respectively.

    图 5  分别使用铟和固体电解质/C复合材料作为对电极和工作电极, 对Li10GeP2S12进行循环伏安(0.1 mV·s–1)测试图[62]

    Fig. 5.  CV curve (0.1 mV·s–1) of Li10GeP2S12 with Indium counter electrode and solid electrolyte/C composites working electrode[62].

    图 6  (a) 活性物质循环过程中体积应变对正极界面接触的影响以及低杨氏模量中间层维持界面牢固接触示意图; (b) 负极界面锂剥离态导致间隙的产生以及加压或合金支架维持界面接触示意图.

    Fig. 6.  (a) Schematic diagram of the effect of volume changes of the active materials during charge/discharge on the contact of cathode interface, and solid contact maintenance by low Young's modulus interlayer; (b) schematic diagram of the gap generated by Li stripping and solid contact maintenance by pressure or alloy frameworks.

    图 7  基于材料数据库的热力学计算 (a)相稳定性: 被研究的亚稳态γ相能量与同成分下热力学平衡相的能量差(energy above hull)是衡量γ相稳定性的重要指标之一; (b) 巨电势相图(grand potential phase diagram): 衡量相稳定性在不同环境(比如对锂电位)下的变化; (c) 界面稳定性: 两相在不同比例时的二元相图及其相应的热力学反应焓变

    Fig. 7.  Schematic illustrations of thermodynamic calculations: (a) Schematic of an energy convex hull, indicating the energy above hull Ehull of a metastable γ phase and its decomposition reaction into the phase equilibria; (b) schematic of a GPPD, illustrating the evolution of phase equilibria under changing Li chemical potential mLi and an applied voltage 4; (c) mutual reaction energy versus composition of a pseudo-binary composed of LiCoO2 and Li3PS4. The star corresponds to the predicted phase equilibria with decomposition enthalpy DHD at the mixing ratio.

    表 1  各类固体电解质电化学窗口的理论计算值与报道值概括

    Table 1.  Summary of the theoretical calculations and the reported values of electrochemical windows for different solid-state electrolytes.

    电解质/SEI理论计算值/V实验值/V测试方法
    LiF0—6.36[16]
    Li2S0—2.01[17]
    Li3N0—0.44[18]0—0.9[19]Li/液体电解质/Li3N-C-PTFE
    70Li2S-30P2S52.28—2.31[17]0—5[20]Li/LPS/不锈钢
    Li6PS5Cl1.71—2.01[17]0—7[21]Li/LPS/不锈钢
    1.25—2.5[15]Li-In/ LPSC/LPSC-C
    Li10GeP2S121.71—2.14[17]0—5[22]Li/LGPS/Au
    1—2.7[23]Li/LGPS/LGPS-C/Pt
    Li7La3Zr2O120.05—2.91[17]0—6[24]Li/LLZO/Au
    0—4[25]Li/LLZO/LLZO-C/Pt
    Li1.5Al0.5Ge1.5(PO4)32.7—4.27[17]0—6[26]Li/LAGP/Pt
    LiPON0.68—2.63[17]0—5.5[27]Li/LiPON/Pt
    下载: 导出CSV

    表 2  常见固态电解质、正极材料以及界面修饰层的杨氏模量

    Table 2.  The Young’s modulus of the conventional solid-state electrolytes, cathodes and interface modification layers.

    LLZOLPSLi2OHClLiMn2O4LiFePO4石墨AlGeSiZnO
    E/GPa150[12]19[69]7.8[70]100[71]124[72]27[73]69[73]80[73]107[73]135[73]
    下载: 导出CSV
  • [1]

    Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928Google Scholar

    [2]

    Janek J, Zeier W G 2016 Nat. Energy 1 1Google Scholar

    [3]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [4]

    Goodenough J B 2012 J. Solid State Electrochem. 16 2019Google Scholar

    [5]

    Soloveichik G L 2014 Nature 505 163

    [6]

    Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167Google Scholar

    [7]

    Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219Google Scholar

    [8]

    López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56Google Scholar

    [9]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513Google Scholar

    [10]

    Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945Google Scholar

    [11]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [12]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar

    [13]

    Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775Google Scholar

    [14]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [15]

    Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428Google Scholar

    [16]

    Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016Google Scholar

    [17]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [18]

    Rabenau A 1982 Solid State Ionics 6 277Google Scholar

    [19]

    Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534Google Scholar

    [20]

    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627

    [21]

    Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008Google Scholar

    [22]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682

    [23]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473Google Scholar

    [24]

    Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342Google Scholar

    [25]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [26]

    Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276Google Scholar

    [27]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [28]

    Xu K 2014 Chem. Rev. 114 11503Google Scholar

    [29]

    Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208Google Scholar

    [30]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar

    [31]

    Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119Google Scholar

    [32]

    Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707Google Scholar

    [33]

    Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2Google Scholar

    [34]

    Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029Google Scholar

    [35]

    Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9Google Scholar

    [36]

    Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016Google Scholar

    [37]

    Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510Google Scholar

    [38]

    Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035Google Scholar

    [39]

    Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764Google Scholar

    [40]

    Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91Google Scholar

    [41]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [42]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042Google Scholar

    [43]

    He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24Google Scholar

    [44]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar

    [45]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565Google Scholar

    [46]

    Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853Google Scholar

    [47]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [48]

    Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90Google Scholar

    [49]

    Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192Google Scholar

    [50]

    Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44Google Scholar

    [51]

    Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179Google Scholar

    [52]

    Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454Google Scholar

    [53]

    Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414Google Scholar

    [54]

    Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771Google Scholar

    [55]

    Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar

    [56]

    Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939Google Scholar

    [57]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar

    [58]

    Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138Google Scholar

    [59]

    Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888Google Scholar

    [60]

    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883Google Scholar

    [61]

    Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21Google Scholar

    [62]

    Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750Google Scholar

    [63]

    Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328Google Scholar

    [64]

    Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar

    [65]

    Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98Google Scholar

    [66]

    Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1Google Scholar

    [67]

    de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609Google Scholar

    [68]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [69]

    McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [70]

    Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071Google Scholar

    [71]

    Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458Google Scholar

    [72]

    Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115Google Scholar

    [73]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar

    [74]

    Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719Google Scholar

    [75]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [76]

    Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665Google Scholar

    [77]

    Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412Google Scholar

    [78]

    Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431Google Scholar

    [79]

    Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar

    [80]

    Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar

    [81]

    Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53Google Scholar

    [82]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [83]

    Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972Google Scholar

    [84]

    Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [85]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212Google Scholar

    [86]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [87]

    Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610Google Scholar

    [88]

    Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190Google Scholar

    [89]

    Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7Google Scholar

    [90]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar

    [91]

    Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261Google Scholar

    [92]

    Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73Google Scholar

    [93]

    Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418Google Scholar

  • [1] 李梅, 钟淑英, 胡军平, 孙宝珍, 徐波. 固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性. 物理学报, 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [2] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [5] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善. 物理学报, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [6] 吴成伟, 谢国锋, 周五星. 全固态锂离子电池内部热输运研究前沿. 物理学报, 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [7] 陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保. 原位表征技术在全固态锂电池中的应用. 物理学报, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [8] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [9] 邢丽丹, 谢启明, 李伟善. 电解液及其界面电化学性质的机理研究进展. 物理学报, 2020, 69(22): 228205. doi: 10.7498/aps.69.20201553
    [10] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展. 物理学报, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [11] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [12] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [13] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [14] 拱越, 谷林. 全固态电池中界面的结构演化和物质输运. 物理学报, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [15] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [16] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响. 物理学报, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [17] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [18] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [19] 林 鑫, 李 涛, 王琳琳, 苏云鹏, 黄卫东. 单相合金凝固过程时间相关的界面稳定性(I)理论分析. 物理学报, 2004, 53(11): 3971-3977. doi: 10.7498/aps.53.3971
    [20] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
计量
  • 文章访问数:  20742
  • PDF下载量:  1140
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-18
  • 修回日期:  2020-11-07
  • 上网日期:  2020-11-23
  • 刊出日期:  2020-11-20

/

返回文章
返回