搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共溅射Al-Zr合金薄膜的非晶化及其力学性能

马冰洋 张安明 尚海龙 孙士阳 李戈扬

引用本文:
Citation:

共溅射Al-Zr合金薄膜的非晶化及其力学性能

马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬

Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films

Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang
PDF
导出引用
  • 为研究合金薄膜非晶化后力学性能持续提高的原因,通过双靶磁控共溅射方法制备了一系列不同Zr含量的Al-Zr合金薄膜,采用EDS,XRD,TEM 和纳米力学探针表征了薄膜的微结构和力学性能. 结果表明:在溅射粒子高分散性和薄膜生长非平衡性的共同作用下,较低Zr 含量的薄膜形成超过饱和固溶体,剧烈的晶格畸变使薄膜的晶粒纳米化,其硬度相应迅速提高. 随Zr含量的进一步增加薄膜形成非晶结构,非晶薄膜的硬度因Al-Zr键数量的增加持续提高,并在含33.3 at.%Zr达到9.8 GPa后增幅减缓. 研究结果揭示了非晶薄膜中Al-Zr键对薄膜力学性能的显著作用.
    In order to reveal the reason why mechanical properties of alloy films increase continuously after amorphizing, a series of Al-Zr alloy films with different Zr contents are prepared by magnetron co-sputtering of Al and Zr targets. The microstructure and mechanical properties of the films are characterized through a number of techniques, including X-ray energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, and nanoindentation. Results show that the films with low Zr content form highly supersaturated solid solutions due to high dispersibility of vapor particles and non-equilibrium growth of the film in co-sputtering process. The film grains are refined to nanoscale particles due to dramatic lattice distortion and the film hardness increases rapidly. As Zr content increases, the film hardness increases continuously because of the increase of Al-Zr chemical bonds after amorphizing, and reaches a high value of 9.8 GPa at 33.3 at.% Zr. The research results reveal the effect of the Al-Zr chemical bonds on mechanical properties in amorphous films
    • 基金项目: 国家重点基础研究计划(973)计划(批准号:2012CB619601)和国家自然科学基金(批准号:51371118)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB619601) and the National Natural Science Foundation of China (Grant No. 51371118).
    [1]

    Rupert T J, Trenkle J C, Schuh C A 2011 Acta Materialia 59 1619

    [2]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese)[杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 物理学报 62 036801]

    [3]

    Botcharova E, Heilmaier M, Freudenberger J, Drew G, Kudashow D, Martin U, Schultz L 2003 Journal of Alloys and Compounds 351 119

    [4]

    Tsuda T, Hussey C L, Stafford G R, Kongstein O 2004 Journal of The Electrochemical Society 151 C447

    [5]

    Sanchette F, Billard A 2001 Surf Coat Technol. 142 218

    [6]

    Perez A, Sanchette F, Billard A, Rébéré, Berziou C, Touzain S, Creus J 2012 Mater Chem Phys 132 154

    [7]

    Sanchette F, Tran Huu Loi, Billard A, Frantz C 1995 Surf Coat. Technol 74-75 903

    [8]

    Lee Z, Ophus C, Fischer L M, Nelson-Fitzpatrick N, Westra K L, Evoy S, Radmilovic V, Dahmen U, Mitlin D 2006 Nanotechnology 17 3063

    [9]

    Stubicar M, Tonejc A, Radic N 2001 Vacuum 61 309

    [10]

    Debili M Y, Loï T H, Frantz C 1998 La revue de Metallurgie-CIT Science et Géenie des Matériaux 1501

    [11]

    Boukhris N, Lallouche S, Debilia M Y, Draissia M 2009 Eur Phys J App Phys. 45 30501

    [12]

    Draissia M Debill M Y 2005 Philosophical Magazine Letters 85 439

    [13]

    Draissia M, Boudemagh H and Debili M Y 2004 Physica Scripta 69 348

    [14]

    Naka M, Shibayanagi T, Maeda M, Zhao S, Mori H 2000 Vacuum. 59 252

    [15]

    Almtoft P K, Ejsing M A, Bøttiger J, Chevallier J 2007 J. Mater. Res. 22 1018

    [16]

    Silva M, Wille C, Klement U, Choi P, Al-Kassab T 2007 Mater Sci Eng A. 445 31

    [17]

    Liu F 2005 Appl. Phys. A. 81 1095

    [18]

    Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H 2002 Nature Materials 1 45

    [19]

    Leyson G P M, Curtin W A, Hector Jr L G, Woodward C F 2010 Nature Materials 9 750

    [20]

    Legros M, Gianola D S, Hemker K J 2008 Acta Materialia 56 3380

    [21]

    Rupert T J, Gianola D S, Gan Y, Hemker K J 2009 Science 326 1686

    [22]

    Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Materialia 55 4041

  • [1]

    Rupert T J, Trenkle J C, Schuh C A 2011 Acta Materialia 59 1619

    [2]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese)[杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 物理学报 62 036801]

    [3]

    Botcharova E, Heilmaier M, Freudenberger J, Drew G, Kudashow D, Martin U, Schultz L 2003 Journal of Alloys and Compounds 351 119

    [4]

    Tsuda T, Hussey C L, Stafford G R, Kongstein O 2004 Journal of The Electrochemical Society 151 C447

    [5]

    Sanchette F, Billard A 2001 Surf Coat Technol. 142 218

    [6]

    Perez A, Sanchette F, Billard A, Rébéré, Berziou C, Touzain S, Creus J 2012 Mater Chem Phys 132 154

    [7]

    Sanchette F, Tran Huu Loi, Billard A, Frantz C 1995 Surf Coat. Technol 74-75 903

    [8]

    Lee Z, Ophus C, Fischer L M, Nelson-Fitzpatrick N, Westra K L, Evoy S, Radmilovic V, Dahmen U, Mitlin D 2006 Nanotechnology 17 3063

    [9]

    Stubicar M, Tonejc A, Radic N 2001 Vacuum 61 309

    [10]

    Debili M Y, Loï T H, Frantz C 1998 La revue de Metallurgie-CIT Science et Géenie des Matériaux 1501

    [11]

    Boukhris N, Lallouche S, Debilia M Y, Draissia M 2009 Eur Phys J App Phys. 45 30501

    [12]

    Draissia M Debill M Y 2005 Philosophical Magazine Letters 85 439

    [13]

    Draissia M, Boudemagh H and Debili M Y 2004 Physica Scripta 69 348

    [14]

    Naka M, Shibayanagi T, Maeda M, Zhao S, Mori H 2000 Vacuum. 59 252

    [15]

    Almtoft P K, Ejsing M A, Bøttiger J, Chevallier J 2007 J. Mater. Res. 22 1018

    [16]

    Silva M, Wille C, Klement U, Choi P, Al-Kassab T 2007 Mater Sci Eng A. 445 31

    [17]

    Liu F 2005 Appl. Phys. A. 81 1095

    [18]

    Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H 2002 Nature Materials 1 45

    [19]

    Leyson G P M, Curtin W A, Hector Jr L G, Woodward C F 2010 Nature Materials 9 750

    [20]

    Legros M, Gianola D S, Hemker K J 2008 Acta Materialia 56 3380

    [21]

    Rupert T J, Gianola D S, Gan Y, Hemker K J 2009 Science 326 1686

    [22]

    Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Materialia 55 4041

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [7] 易军. 非晶纤维的制备和力学行为. 物理学报, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [8] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响. 物理学报, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [9] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [10] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] 李晓娜, 郑月红, 李胜斌, 董闯. 磁控溅射法制备型Fe3Si8 M系三元薄膜. 物理学报, 2012, 61(24): 247801. doi: 10.7498/aps.61.247801
    [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [14] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [15] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [16] 彭静, 徐智谋, 王双保, 董泽华. 非晶钛酸锶钡薄膜的金属有机分解法制备及其光学性能. 物理学报, 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [17] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  3708
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-11
  • 修回日期:  2014-03-13
  • 刊出日期:  2014-07-05

共溅射Al-Zr合金薄膜的非晶化及其力学性能

  • 1. 上海交通大学金属基复合材料国家重点实验室, 上海 200240
    基金项目: 国家重点基础研究计划(973)计划(批准号:2012CB619601)和国家自然科学基金(批准号:51371118)资助的课题.

摘要: 为研究合金薄膜非晶化后力学性能持续提高的原因,通过双靶磁控共溅射方法制备了一系列不同Zr含量的Al-Zr合金薄膜,采用EDS,XRD,TEM 和纳米力学探针表征了薄膜的微结构和力学性能. 结果表明:在溅射粒子高分散性和薄膜生长非平衡性的共同作用下,较低Zr 含量的薄膜形成超过饱和固溶体,剧烈的晶格畸变使薄膜的晶粒纳米化,其硬度相应迅速提高. 随Zr含量的进一步增加薄膜形成非晶结构,非晶薄膜的硬度因Al-Zr键数量的增加持续提高,并在含33.3 at.%Zr达到9.8 GPa后增幅减缓. 研究结果揭示了非晶薄膜中Al-Zr键对薄膜力学性能的显著作用.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回