搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的目标频空电磁散射特性快速分析

陈明生 王时文 马韬 吴先良

引用本文:
Citation:

基于压缩感知的目标频空电磁散射特性快速分析

陈明生, 王时文, 马韬, 吴先良

Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing

Chen Ming-Sheng, Wang Shi-Wen, Ma Tao, Wu Xian-Liang
PDF
导出引用
  • 矩量法是求解目标电磁散射问题的一种常用数值方法,因其精度较高而被广泛应用. 应用矩量法求解目标频空电磁散射特性时,随着入射波的角度和频率的变化,需要间隔很小的角度和频率步长反复求解矩量法生成的矩阵方程,运算量极大. 为解决此类问题,本文结合压缩感知理论和渐近波形估计形成一种新的有效计算方法. 首先,基于压缩感知理论引入一种富含空间信息的新型入射源,其次,在该入射源照射下应用渐近波形估计技术求解,从而快速实现目标频空电磁散射特性分析.
    Method of moments (MOM) is a common numerical method for solving electromagnetics, which is used widely owing to its high accuracy. As the traditional MOM is applied to solving electromagnetic problem in both spatial and frequency domains, the matrix equation generated from the integral equation must be solved repeatedly since small spatial increments and frequency increments are both required. To resolve problems of this kind, the compressive sensing (CS) theory combined with the asymptotic waveform evaluation (AWE) is introduced to form a new efficient computational method. Firstly, a new incident source is constructed based on CS theory, in which much spatial information is included. Secondly, illuminated by the new incident source, the new equation is solved by AWE technique, and finally a fast implement is formed for solving electromagnetic scattering characteristics in both spatial and frequency domains.
    • 基金项目: 教育部科学技术研究重点项目(批准号:212081),安徽省学术技术带头人活动经费和安徽省自然科学基金(批准号:1408085QF104)资助的课题.
    • Funds: Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212081), the Project of Academic Technology Leader's Funds in Anhui Province, and the Anhui Provincial Natural Science Foundation, China (Grant No. 1408085QF104).
    [1]

    Sheng X Q, Song W 2012 Essentials of Computational Electromagnetics (Singapore: Wiley-IEEE Press) p29

    [2]
    [3]

    Xie C F, Wu X L 2002 Electromagnetic Scattering Theory and Computation. (Hefei: Anhui University Press) p8 (in Chinese)[谢处方, 吴先良电磁散射理论与计算(合肥: 安徽大学出版社)第8页]

    [4]

    Wang A Q, Guo L X, Chai C 2011 Chin. Phys. B 20 050202

    [5]
    [6]

    Hu J, Lu W C, Shao H R, Nie Z P 2012 IEEE Trans. Ant. Prop. 60 5709

    [7]
    [8]

    Yang K, Yilmaz A E 2012 IEEE Trans. Geosci. Remote Sens. 50 1130

    [9]
    [10]

    Zhao L, Cui T J 2007 Microw. Opt. Tech. Lett. 49 305

    [11]
    [12]
    [13]

    Zhang X Y, Sheng X Q 2009 International Conference on Microwave Technology and Computational Electromagnetics Beijing China November 3-6 2009 p452

    [14]
    [15]

    Du H M, Chen M S, Wu X L 2012 Acta Phys. Sin. 61 097201 (in Chinese)[杜红梅, 陈明生, 吴先良 2012 物理学报 61 097201]

    [16]

    Fan Z H, Liu Z W, Ding D Z, Chen R S 2010 IEEE Trans. Ant. Prop. 58 2484

    [17]
    [18]

    Ling J, Gong S X, Wang X, Lu B, Wang W T 2010 IEEE Ant. and Wire. Prop. Lett. 9 244

    [19]
    [20]

    Wang Y, Wu Q, Wu Y M 2012 Chin. Phys. B 21 014212

    [21]
    [22]
    [23]

    Schrder A, Brns H D, Schuster C 2012 IEEE Trans. Ant. Prop. 60 6058

    [24]
    [25]

    Liu Z W, Chen R S, Ding D Z, Luo L 2011 J. Appl. Comput. Electromag. Soc. 26 696

    [26]
    [27]

    Chen M S, Liu F L, Du H M 2011 IEEE Ant. and Wire. Prop. Lett. 10 1243

    [28]
    [29]

    Qaisar S, Bilal R M, Lqbal W, Naureen M, Lee S 2013 J. Commun. and Networks 15 443

    [30]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [31]
    [32]

    Tropp J A, Gilbert A 2007 IEEE Trans. Inf. Theory 53 4655

    [33]
  • [1]

    Sheng X Q, Song W 2012 Essentials of Computational Electromagnetics (Singapore: Wiley-IEEE Press) p29

    [2]
    [3]

    Xie C F, Wu X L 2002 Electromagnetic Scattering Theory and Computation. (Hefei: Anhui University Press) p8 (in Chinese)[谢处方, 吴先良电磁散射理论与计算(合肥: 安徽大学出版社)第8页]

    [4]

    Wang A Q, Guo L X, Chai C 2011 Chin. Phys. B 20 050202

    [5]
    [6]

    Hu J, Lu W C, Shao H R, Nie Z P 2012 IEEE Trans. Ant. Prop. 60 5709

    [7]
    [8]

    Yang K, Yilmaz A E 2012 IEEE Trans. Geosci. Remote Sens. 50 1130

    [9]
    [10]

    Zhao L, Cui T J 2007 Microw. Opt. Tech. Lett. 49 305

    [11]
    [12]
    [13]

    Zhang X Y, Sheng X Q 2009 International Conference on Microwave Technology and Computational Electromagnetics Beijing China November 3-6 2009 p452

    [14]
    [15]

    Du H M, Chen M S, Wu X L 2012 Acta Phys. Sin. 61 097201 (in Chinese)[杜红梅, 陈明生, 吴先良 2012 物理学报 61 097201]

    [16]

    Fan Z H, Liu Z W, Ding D Z, Chen R S 2010 IEEE Trans. Ant. Prop. 58 2484

    [17]
    [18]

    Ling J, Gong S X, Wang X, Lu B, Wang W T 2010 IEEE Ant. and Wire. Prop. Lett. 9 244

    [19]
    [20]

    Wang Y, Wu Q, Wu Y M 2012 Chin. Phys. B 21 014212

    [21]
    [22]
    [23]

    Schrder A, Brns H D, Schuster C 2012 IEEE Trans. Ant. Prop. 60 6058

    [24]
    [25]

    Liu Z W, Chen R S, Ding D Z, Luo L 2011 J. Appl. Comput. Electromag. Soc. 26 696

    [26]
    [27]

    Chen M S, Liu F L, Du H M 2011 IEEE Ant. and Wire. Prop. Lett. 10 1243

    [28]
    [29]

    Qaisar S, Bilal R M, Lqbal W, Naureen M, Lee S 2013 J. Commun. and Networks 15 443

    [30]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [31]
    [32]

    Tropp J A, Gilbert A 2007 IEEE Trans. Inf. Theory 53 4655

    [33]
计量
  • 文章访问数:  1995
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-20
  • 修回日期:  2014-04-28
  • 刊出日期:  2014-09-05

基于压缩感知的目标频空电磁散射特性快速分析

  • 1. 合肥师范学院电子信息工程学院, 合肥 230601;
  • 2. 安徽大学电子信息工程学院, 合肥 230039
    基金项目: 

    教育部科学技术研究重点项目(批准号:212081),安徽省学术技术带头人活动经费和安徽省自然科学基金(批准号:1408085QF104)资助的课题.

摘要: 矩量法是求解目标电磁散射问题的一种常用数值方法,因其精度较高而被广泛应用. 应用矩量法求解目标频空电磁散射特性时,随着入射波的角度和频率的变化,需要间隔很小的角度和频率步长反复求解矩量法生成的矩阵方程,运算量极大. 为解决此类问题,本文结合压缩感知理论和渐近波形估计形成一种新的有效计算方法. 首先,基于压缩感知理论引入一种富含空间信息的新型入射源,其次,在该入射源照射下应用渐近波形估计技术求解,从而快速实现目标频空电磁散射特性分析.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回