搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Mueller矩阵椭偏仪的纳米压印模板与光刻胶光栅结构准确测量

陈修国 刘世元 张传维 吴懿平 马智超 孙堂友 徐智谋

引用本文:
Citation:

基于Mueller矩阵椭偏仪的纳米压印模板与光刻胶光栅结构准确测量

陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋

Accurate measurement of templates and imprinted grating structures using Mueller matrix ellipsometry

Chen Xiu-Guo, Liu Shi-Yuan, Zhang Chuan-Wei, Wu Yi-Ping, Ma Zhi-Chao, Sun Tang-You, Xu Zhi-Mou
PDF
导出引用
  • 在纳米压印工艺中,对模板和压印结构的几何参数进行快速、低成本、非破坏性地准确测量具有非常重要的意义. 与传统光谱椭偏仪只能改变波长和入射角2个测量条件并且在每一组测量条件下只能获得振幅比和相位差2个测量参数相比,Mueller矩阵椭偏仪可以改变波长、入射角和方位角3个测量条件,而且在每一组测量条件下都可以获得一个4×4阶Mueller矩阵共16个参数,因此可以获得更为丰富的测量信息. 通过选择合适的测量条件配置,充分利用Mueller矩阵中的测量信息,有望实现更为准确的纳米结构测量. 基于此,本文利用自主研制的Mueller矩阵椭偏仪对硅基光栅模板和纳米压印光刻胶光栅结构进行了测量. 实验结果表明,通过对Mueller矩阵椭偏仪进行测量条件优化配置,并且在光学特性建模时考虑测量过程中出现的退偏效应,可以实现压印工艺中纳米结构线宽、线高、侧壁角以及残胶厚度等几何参数更为准确的测量,同时对于纳米压印光刻胶光栅结构还可以直接得到光斑照射区域内残胶厚度的不均匀性参数.
    In order to control nanoimprint lithography (NIL) processes for achieving good fidelity, the fast, low-cost, non-destructive and accurate measurement of geometric parameters of templates and imprinted grating structures is of great importance. Compared with conventional ellipsometric scatterometry, which only obtains two ellipsometric angles and has 2 changeable measurement conditions, i.e., the wavelength and the incidence angle, Mueller matrix ellipsometry (MME) can provide up to 16 quantities of a 4×4 Mueller matrix in each measurement with 3 changeable measurement conditions, i.e., the wavelength, the incidence angle and the azimuthal angle. Therefore, MME can acquire much more useful information about the sample. It is expected that much more accurate measurements of nanostructures can be achieved by choosing proper measurement configurations and completely using the rich information hidden in the measured Mueller matrices. Accordingly, the templates and imprinted grating structures in NIL processes are measured using an in-house developed Mueller matrix ellipsometer. We experimentally demonstrate that more accurate quantification of geometric parameters, such as line width, line height, sidewall angle and residual layer thickness, can be achieved by performing MME measurements in the optimal configuration and meanwhile by incorporating depolarization effects into the optical model. Moreover, as for the imprinted grating structures, the residual layer thickness variation over the illumination spot can also be directly determined by MME. The comparison between MME-extracted template and imprinted resist profiles also indicates an excellent fidelity of the nanoimprint pattern transfer process.
    • 基金项目: 国家自然科学基金(批准号:91023032,51005091)、国家重大科学仪器设备开发专项(批准号:2011YQ160002)和教育部长江学者和创新团队发展计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91023032, 51005091), the National Instrument Development Specific Project of China (Grant No. 2011YQ160002), and the Program for Changjiang Scholars and Innovative Research Team in University of China.
    [1]

    Chou S Y, Krauss P R, Renstrom P J 1996 Science 272 85

    [2]

    Chou S Y, Krauss P R, Zhang W, Guo L, Zhuang L 1997 J. Vac. Sci. Technol. B 15 2897

    [3]

    Fuard D, Perret C, Farys V, Gourgon C, Schiavone P 2005 J. Vac. Sci. Technol. B 23 3069

    [4]

    Patrick H J, Germer T A, Ding Y F, Ro H W, Richter L J, Soles C L 2008 Appl. Phys. Lett. 93 233015

    [5]

    Yu Z N, Hwu J, Liu Y D, Su Z P, Yang H, Wang H Y, Hu W, Xu Y, Kurataka N, Hsu Y, Lee S, Gauzner G, Lee K, Kuo D 2010 J. Vac. Sci. Technol. B 28 C6M130

    [6]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W N, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [7]

    Azzam R M A, Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: North-Holland)

    [8]

    Chen L Y, Hou X Y, Huang D M, Zhang F L, Feng X W, Yang M, Su Y, Qian Y H, Wang X 1994 Chin. Phys. 3 595

    [9]

    Zhang X J, Ma H L, Li Y X, Wang Q P, Ma J, Zong F J, Xiao H D 2006 Chin. Phys. 15 2385

    [10]

    Zhang T, Yin J, Ding L H, Zhang W F 2013 Chin. Phys. B 22 117801

    [11]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983

    [12]

    Niu X, Jakatdar N, Bao J W, Spanos C J 2001 IEEE Trans. Semicond. Manuf. 14 97

    [13]

    Silver R, Germer T, Attota R, Barnes B M, Bundary B, Allgair J, Marx E, Jun J 2007 Proc. SPIE 6518 65180U

    [14]

    Novikova T, De Martino A, Hatit S B, Drévillon B 2006 Appl. Opt. 45 3688

    [15]

    Li J, Hwu J J, Liu Y D, Rabello S, Liu Z, Hu J T 2010 J. Micro Nanolith. MEMS MOEMS 9 041305

    [16]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 J. Micro Nanolith. MEMS MOEMS 12 033013

    [17]

    Chen X G, Zhang C W, Liu S Y 2013 Appl. Phys. Lett. 103 151605

    [18]

    Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165

    [19]

    Collins R W, Koh J 1999 J. Opt. Soc. Am. A 16 1997

    [20]

    Liu S Y, Chen X G, Zhang C W 2014 ECS Trans. 60 237

    [21]

    Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications (New York: Wiley)

    [22]

    Liu S Y 2014 J. Mech. Eng. 50 1(in Chinese)[刘世元 2014 机械工程学报 50 1]

    [23]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [24]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [25]

    Liu S Y, Ma Y, Chen X G, Zhang C W 2012 Opt. Eng. 51 081504

    [26]

    Chen X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[陈修国 2013 博士学位论文 (武汉: 华中科技大学)]

    [27]

    Gil J J, Bernabeu E 1986 Opt. Acta 33 185

    [28]

    van de Hulst H C 1957 Light Scattering by Small Particles (New York: Wiley)

    [29]

    Zhang C W, Liu S Y, Shi T L, Tang Z R 2009 J. Opt. Soc. Am. A 26 2327

    [30]

    Chen X G, Liu S Y, Zhang C W, Zhu J L 2013 Measurement 46 2638

    [31]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 Appl. Opt. 52 6727

    [32]

    Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys. Sin. 62 168102(in Chinese)[张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元 2013 物理学报 62 168102]

    [33]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104(in Chinese)[彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [34]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 J. Appl. Phys. 83 3323

    [35]

    Forouhi A R, Bloomer I 1988 Phys. Rev. B 38 1865

    [36]

    Pochi Y 2005 Optical Waves in Layered Media (New York: Wiley)

    [37]

    Chen X G, Liu S Y, Gu H G, Zhang C W 2014 Thin Solid Films, doi: 10.1016/j.tsf.2014.01.049

  • [1]

    Chou S Y, Krauss P R, Renstrom P J 1996 Science 272 85

    [2]

    Chou S Y, Krauss P R, Zhang W, Guo L, Zhuang L 1997 J. Vac. Sci. Technol. B 15 2897

    [3]

    Fuard D, Perret C, Farys V, Gourgon C, Schiavone P 2005 J. Vac. Sci. Technol. B 23 3069

    [4]

    Patrick H J, Germer T A, Ding Y F, Ro H W, Richter L J, Soles C L 2008 Appl. Phys. Lett. 93 233015

    [5]

    Yu Z N, Hwu J, Liu Y D, Su Z P, Yang H, Wang H Y, Hu W, Xu Y, Kurataka N, Hsu Y, Lee S, Gauzner G, Lee K, Kuo D 2010 J. Vac. Sci. Technol. B 28 C6M130

    [6]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W N, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [7]

    Azzam R M A, Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: North-Holland)

    [8]

    Chen L Y, Hou X Y, Huang D M, Zhang F L, Feng X W, Yang M, Su Y, Qian Y H, Wang X 1994 Chin. Phys. 3 595

    [9]

    Zhang X J, Ma H L, Li Y X, Wang Q P, Ma J, Zong F J, Xiao H D 2006 Chin. Phys. 15 2385

    [10]

    Zhang T, Yin J, Ding L H, Zhang W F 2013 Chin. Phys. B 22 117801

    [11]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983

    [12]

    Niu X, Jakatdar N, Bao J W, Spanos C J 2001 IEEE Trans. Semicond. Manuf. 14 97

    [13]

    Silver R, Germer T, Attota R, Barnes B M, Bundary B, Allgair J, Marx E, Jun J 2007 Proc. SPIE 6518 65180U

    [14]

    Novikova T, De Martino A, Hatit S B, Drévillon B 2006 Appl. Opt. 45 3688

    [15]

    Li J, Hwu J J, Liu Y D, Rabello S, Liu Z, Hu J T 2010 J. Micro Nanolith. MEMS MOEMS 9 041305

    [16]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 J. Micro Nanolith. MEMS MOEMS 12 033013

    [17]

    Chen X G, Zhang C W, Liu S Y 2013 Appl. Phys. Lett. 103 151605

    [18]

    Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165

    [19]

    Collins R W, Koh J 1999 J. Opt. Soc. Am. A 16 1997

    [20]

    Liu S Y, Chen X G, Zhang C W 2014 ECS Trans. 60 237

    [21]

    Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications (New York: Wiley)

    [22]

    Liu S Y 2014 J. Mech. Eng. 50 1(in Chinese)[刘世元 2014 机械工程学报 50 1]

    [23]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [24]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [25]

    Liu S Y, Ma Y, Chen X G, Zhang C W 2012 Opt. Eng. 51 081504

    [26]

    Chen X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[陈修国 2013 博士学位论文 (武汉: 华中科技大学)]

    [27]

    Gil J J, Bernabeu E 1986 Opt. Acta 33 185

    [28]

    van de Hulst H C 1957 Light Scattering by Small Particles (New York: Wiley)

    [29]

    Zhang C W, Liu S Y, Shi T L, Tang Z R 2009 J. Opt. Soc. Am. A 26 2327

    [30]

    Chen X G, Liu S Y, Zhang C W, Zhu J L 2013 Measurement 46 2638

    [31]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 Appl. Opt. 52 6727

    [32]

    Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys. Sin. 62 168102(in Chinese)[张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元 2013 物理学报 62 168102]

    [33]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104(in Chinese)[彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [34]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 J. Appl. Phys. 83 3323

    [35]

    Forouhi A R, Bloomer I 1988 Phys. Rev. B 38 1865

    [36]

    Pochi Y 2005 Optical Waves in Layered Media (New York: Wiley)

    [37]

    Chen X G, Liu S Y, Gu H G, Zhang C W 2014 Thin Solid Films, doi: 10.1016/j.tsf.2014.01.049

  • [1] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [2] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [3] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [4] 陈修国, 袁奎, 杜卫超, 陈军, 江浩, 张传维, 刘世元. 基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量. 物理学报, 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [5] 陆乃彦, 翁雨燕. 软模板纳米压印技术及其对共轭高分子的取向控制研究. 物理学报, 2014, 63(22): 228104. doi: 10.7498/aps.63.228104
    [6] 张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静. 纳米压印多孔硅模板的研究. 物理学报, 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [7] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测. 物理学报, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [8] 彭静, 徐智谋, 吴小峰, 孙堂友. 纳米压印技术制备表面光子晶体LED的研究. 物理学报, 2013, 62(3): 036104. doi: 10.7498/aps.62.036104
    [9] 李天昊, 郑国恒, 刘超然, 夏委委, 李冬雪, 段智勇. 掩膜板凸出环隔离压缩式纳米压印施压气体的研究. 物理学报, 2013, 62(6): 068103. doi: 10.7498/aps.62.068103
    [10] 张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元. 硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究. 物理学报, 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [11] 夏委委, 郑国恒, 李天昊, 刘超然, 李冬雪, 段智勇. 假塑性流体纳米压印中影响填充度的因素. 物理学报, 2013, 62(18): 188105. doi: 10.7498/aps.62.188105
    [12] 张继涛, 吴学健, 李岩, 尉昊赟. 利用光频梳提高台阶高度测量准确度的方法. 物理学报, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [13] 廖乃镘, 李 伟, 蒋亚东, 匡跃军, 祁康成, 李世彬, 吴志明. 椭偏透射法测量氢化非晶硅薄膜厚度和光学参数. 物理学报, 2008, 57(3): 1542-1547. doi: 10.7498/aps.57.1542
    [14] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [15] 文锦辉, 雷 亮, 焦中兴, 赖天树, 林位株. 两种光谱相位相干电场重构法对复杂脉冲测量的准确度比较. 物理学报, 2006, 55(4): 1883-1888. doi: 10.7498/aps.55.1883
    [16] 陈雷明, 郭艳峰, 郭 熹, 唐为华. 改性光刻胶制备纳米压印模版. 物理学报, 2006, 55(12): 6511-6514. doi: 10.7498/aps.55.6511
    [17] 郭海明, 刘虹雯, 王业亮, 谢惠民, 戴福隆, 高鸿钧. 扫描探针显微学中的云纹方法. 物理学报, 2003, 52(10): 2514-2519. doi: 10.7498/aps.52.2514
    [18] 曹念文, 刘文清, 张玉钧. 几种散射介质散射光解偏度的测量. 物理学报, 2000, 49(4): 647-653. doi: 10.7498/aps.49.647
    [19] 余保龙, 朱从善, 干福熹. PbS纳米微粒溶胶热光系数dn/dT的测量和光束限制效应研究. 物理学报, 1997, 46(12): 2394-2400. doi: 10.7498/aps.46.2394
    [20] 忻贤杰. 施密特电路的触发过程及它在测量窄脉冲振幅时的准确度. 物理学报, 1957, 13(6): 500-514. doi: 10.7498/aps.13.500
计量
  • 文章访问数:  2890
  • PDF下载量:  1014
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-05-05
  • 刊出日期:  2014-09-05

基于Mueller矩阵椭偏仪的纳米压印模板与光刻胶光栅结构准确测量

  • 1. 华中科技大学, 数字制造装备与技术国家重点实验室, 武汉 430074;
  • 2. 华中科技大学材料科学与工程学院, 武汉 430074;
  • 3. 华中科技大学光学与电子信息学院, 武汉 430074
    基金项目: 国家自然科学基金(批准号:91023032,51005091)、国家重大科学仪器设备开发专项(批准号:2011YQ160002)和教育部长江学者和创新团队发展计划资助的课题.

摘要: 在纳米压印工艺中,对模板和压印结构的几何参数进行快速、低成本、非破坏性地准确测量具有非常重要的意义. 与传统光谱椭偏仪只能改变波长和入射角2个测量条件并且在每一组测量条件下只能获得振幅比和相位差2个测量参数相比,Mueller矩阵椭偏仪可以改变波长、入射角和方位角3个测量条件,而且在每一组测量条件下都可以获得一个4×4阶Mueller矩阵共16个参数,因此可以获得更为丰富的测量信息. 通过选择合适的测量条件配置,充分利用Mueller矩阵中的测量信息,有望实现更为准确的纳米结构测量. 基于此,本文利用自主研制的Mueller矩阵椭偏仪对硅基光栅模板和纳米压印光刻胶光栅结构进行了测量. 实验结果表明,通过对Mueller矩阵椭偏仪进行测量条件优化配置,并且在光学特性建模时考虑测量过程中出现的退偏效应,可以实现压印工艺中纳米结构线宽、线高、侧壁角以及残胶厚度等几何参数更为准确的测量,同时对于纳米压印光刻胶光栅结构还可以直接得到光斑照射区域内残胶厚度的不均匀性参数.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回