搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ射线辐照对掺Yb光纤材料性能的影响

黄宏琪 赵楠 陈瑰 廖雷 刘自军 彭景刚 戴能利

引用本文:
Citation:

γ射线辐照对掺Yb光纤材料性能的影响

黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利

Effects of γ-radiation on Yb-doped fiber

Huang Hong-Qi, Zhao Nan, Chen Gui, Liao Lei, Liu Zi-Jun, Peng Jing-Gang, Dai Neng-Li
PDF
导出引用
  • 采用改进的化学气相沉积法制备掺Yb石英光纤预制棒,以该预制棒制备了尺寸为10/130 μm的双包层掺Yb光纤,将这些光纤分成若干组,在不同剂量的60Co γ辐射源下辐照,测试了光纤在辐射前后的吸收谱和激光性能以及光纤预制棒切片辐照后的吸收. 实验结果表明:光纤中已存在的色心缺陷(如氧空位(Ⅱ))和辐照引起的色心缺陷(如E'心、过氧基以及Yb2+离子)等因素的叠加作用可能导致辐照后的光纤在可见光区域的吸收显著增大;与辐照前相比,辐照后光纤的斜率效率、光-光效率显著下降,剂量越大激光性能下降得越厉害;基于Power-Law定理拟合了光纤辐致损耗与所受剂量的关系曲线,定量分析了不同剂量辐照后光纤激光性能下降的原因. 研究结果将为进一步发展抗辐照光纤提供理论和实验依据.
    Yb-doped double-clad fibers are prepared through a conventional modified chemical-vapor deposition technique and solution doping method: each fiber contains a core of around 10 μm in diameter. These fibers are divided into groups under 60Co γ radiations of different doses, and we investigate the fiber absorption spectra and laser spectral properties before and after irradiation. Experimental results show that with increasing the irradiation dose the absorption of the fiber after irradiation increases significantly in the visible region, we believe that the enhancement of optical fiber absorption in the visible region may be due to the color center defects existing already in the fiber (such ODC (Ⅱ)) and the color center defects produced by the irradiation (E'center, POR and Yb2+ions). We also analyze slope efficiencies, bare efficiencies, and transmission characteristics of the fiber before and after laser irradiation. Finally, we use the power-law to fit the radiation-induced losses of the fiber under different radiation doses, and the results obtained in this paper provide a theoretical basis for studying the anti-radiation of optical fibers.
    • 基金项目: 国家自然科学基金(批准号:61378070)和湖北省自然科学基金(批准号:ZRY0535)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61378070) and the Natural Science Foundation of Hubei Province, China (Grant No. ZRY0535).
    [1]

    Griscom D L, Gingerich M E, Friebele E J 1993 Phys. Rev. Lett. 71 1019

    [2]

    Friebele E J, Schultz P C, Gingerich M E 1980 Appl. Opt. 19 2910

    [3]

    Brooks C, Di Teodoro F 2005 Opt. Express 13 8999

    [4]

    Fox B P, Simmons-Potter K, Thomes W J, et al 2010 IEEE Trans. Nucl. Sci. 57 1618

    [5]

    Lezius M, Lezius K, Predehl W, Stöwer A, Trler M 2012 IEEE Trans. Nucl. Sci. 59 425

    [6]

    Liu F X, Zhang C H, Jin S Z, Xuan Z H, Li Z M 1994 Acta Phys. Sin. 43 1871 (in Chinese) [刘方新, 张辰华, 金嗣昭, 轩植华, 李宗民 1994 物理学报 43 1871]

    [7]

    Jiang H, Chen B X, Fu C S, Sui G R 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 物理学报 59 7782]

    [8]

    Hu K S, Li Z X, Ning D, Li H, Zhou J P, Liu W M 1992 Acta Phys. Sin. 41 890 (in Chinese) [胡恺生, 李宗祥, 宁鼎, 李浩, 周建平, 刘为民 1992 物理学报 41 890]

    [9]

    Sheng Y B, Yang L Y, Luan H X, Liu Z J, Li J Y, Dai N L 2012 Acta Phys. Sin. 61 116301 (in Chinese) [盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利 2012 物理学报 61 116301]

    [10]

    Girard S, Kuhnhenn J A, Brichard B, van Uffelen M, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015

    [11]

    David L Griscom 2013 Phys. Res. Int. 2013 379041

    [12]

    Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523

    [13]

    Girard S, Tortech B, Regnier E, van Uffelen M, Gusarov A, Ouerdane Y 2007 IEEE Trans. Nucl. Sci. 54 2426

    [14]

    Alexander L T, Mikhail Y S, Pavel F K, Vladimir F K, Albina I S, Konstantin N N, Sergey E B 2014 J. Lightwave Technol. 32 213

    [15]

    Girard S, Mescia L, Vivona M, Laurent A, Ouerdane Y, Marcandella C, Prudenzano F, Boukenter A 2013 IEEE Trans. Nucl. Sci. 31 1247

    [16]

    Raghavachari K, Ricci D, Pacchioni G 2002 J. Chem. Phys. 116 825

    [17]

    Skuja L, Hirano M, Hosono H 2005 Phys. Status Solidi C 2 15

    [18]

    Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923

    [19]

    Raghavachari K, Pacchioni G 2001 J. Chem. Phys. 114 4657

    [20]

    Tanimura K, Itoh C, Itoh N 1988 J. Phys. C: Solid State Phys. 21 1869

    [21]

    Griscom D L 2004 J. Non-Cyst. Solids 349 139

    [22]

    Griscom D L 2006 J. Non-Cyst. Solids 352 2601

    [23]

    Sasajima Y, Tanimura K 2003 Phys. Rev. B 68 014204

    [24]

    Cooke D W 1996 J. Nucl. Mater. 232 214

    [25]

    Carlson C G, Keister K E, Dragic P D 2012 J. Opt. Soc. Am. B 27 2087

    [26]

    Engholm M, Norin L, Berg D 2007 Opt. Lett. 32 3352

    [27]

    Sheng Y B, Xing R X, Luan H X, Liu Z J, Li J Y, Dai N L 2012 J. Inorg. Mater. 27 1077 (in Chinese) [盛于邦, 邢瑞先, 栾怀训, 刘自军, 李进延, 戴能利 2012 无机材料学报 27 1077]

    [28]

    Henschel H, Kohn O, Schmidt H U, Kirchhof J, Unger S 1998 IEEE Trans. Nucl. Sci. 45 1552

    [29]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 27 6873

  • [1]

    Griscom D L, Gingerich M E, Friebele E J 1993 Phys. Rev. Lett. 71 1019

    [2]

    Friebele E J, Schultz P C, Gingerich M E 1980 Appl. Opt. 19 2910

    [3]

    Brooks C, Di Teodoro F 2005 Opt. Express 13 8999

    [4]

    Fox B P, Simmons-Potter K, Thomes W J, et al 2010 IEEE Trans. Nucl. Sci. 57 1618

    [5]

    Lezius M, Lezius K, Predehl W, Stöwer A, Trler M 2012 IEEE Trans. Nucl. Sci. 59 425

    [6]

    Liu F X, Zhang C H, Jin S Z, Xuan Z H, Li Z M 1994 Acta Phys. Sin. 43 1871 (in Chinese) [刘方新, 张辰华, 金嗣昭, 轩植华, 李宗民 1994 物理学报 43 1871]

    [7]

    Jiang H, Chen B X, Fu C S, Sui G R 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 物理学报 59 7782]

    [8]

    Hu K S, Li Z X, Ning D, Li H, Zhou J P, Liu W M 1992 Acta Phys. Sin. 41 890 (in Chinese) [胡恺生, 李宗祥, 宁鼎, 李浩, 周建平, 刘为民 1992 物理学报 41 890]

    [9]

    Sheng Y B, Yang L Y, Luan H X, Liu Z J, Li J Y, Dai N L 2012 Acta Phys. Sin. 61 116301 (in Chinese) [盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利 2012 物理学报 61 116301]

    [10]

    Girard S, Kuhnhenn J A, Brichard B, van Uffelen M, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015

    [11]

    David L Griscom 2013 Phys. Res. Int. 2013 379041

    [12]

    Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523

    [13]

    Girard S, Tortech B, Regnier E, van Uffelen M, Gusarov A, Ouerdane Y 2007 IEEE Trans. Nucl. Sci. 54 2426

    [14]

    Alexander L T, Mikhail Y S, Pavel F K, Vladimir F K, Albina I S, Konstantin N N, Sergey E B 2014 J. Lightwave Technol. 32 213

    [15]

    Girard S, Mescia L, Vivona M, Laurent A, Ouerdane Y, Marcandella C, Prudenzano F, Boukenter A 2013 IEEE Trans. Nucl. Sci. 31 1247

    [16]

    Raghavachari K, Ricci D, Pacchioni G 2002 J. Chem. Phys. 116 825

    [17]

    Skuja L, Hirano M, Hosono H 2005 Phys. Status Solidi C 2 15

    [18]

    Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923

    [19]

    Raghavachari K, Pacchioni G 2001 J. Chem. Phys. 114 4657

    [20]

    Tanimura K, Itoh C, Itoh N 1988 J. Phys. C: Solid State Phys. 21 1869

    [21]

    Griscom D L 2004 J. Non-Cyst. Solids 349 139

    [22]

    Griscom D L 2006 J. Non-Cyst. Solids 352 2601

    [23]

    Sasajima Y, Tanimura K 2003 Phys. Rev. B 68 014204

    [24]

    Cooke D W 1996 J. Nucl. Mater. 232 214

    [25]

    Carlson C G, Keister K E, Dragic P D 2012 J. Opt. Soc. Am. B 27 2087

    [26]

    Engholm M, Norin L, Berg D 2007 Opt. Lett. 32 3352

    [27]

    Sheng Y B, Xing R X, Luan H X, Liu Z J, Li J Y, Dai N L 2012 J. Inorg. Mater. 27 1077 (in Chinese) [盛于邦, 邢瑞先, 栾怀训, 刘自军, 李进延, 戴能利 2012 无机材料学报 27 1077]

    [28]

    Henschel H, Kohn O, Schmidt H U, Kirchhof J, Unger S 1998 IEEE Trans. Nucl. Sci. 45 1552

    [29]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 27 6873

  • [1] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究. 物理学报, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [2] 邢颍滨, 叶宝圆, 蒋作文, 戴能利, 李进延. 高效率掺Tm3+双包层光纤及光纤激光器的研制. 物理学报, 2014, 63(1): 014209. doi: 10.7498/aps.63.014209
    [3] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [4] 延凤平, 刘鹏, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 双包层稀土掺杂光纤抽运吸收特性的分析. 物理学报, 2012, 61(16): 164203. doi: 10.7498/aps.61.164203
    [5] 王岩山, 蒋作文, 栾怀训, 张泽学, 彭景刚, 杨旅云, 李进延, 戴能利. 双包层掺Bi光纤的制备及其光谱特性研究. 物理学报, 2012, 61(8): 084215. doi: 10.7498/aps.61.084215
    [6] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [7] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [8] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响. 物理学报, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [9] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [10] 刘洋, 程勇, 许立新, 郑睿, 王小兵, 王会升, 卢常勇, 孙斌. 两路双包层光纤激光器互注入锁相实验研究. 物理学报, 2009, 58(6): 3929-3933. doi: 10.7498/aps.58.3929
    [11] 赵宏明, 楼祺洪, 周 军, 董景星, 魏运荣, 王之江. 不同腔结构下的声光调Q双包层光纤激光器特性研究. 物理学报, 2008, 57(6): 3525-3530. doi: 10.7498/aps.57.3525
    [12] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [13] 邹 军, 黄涛华, 王 军, 张连翰, 周圣明, 徐 军. Ti: LiAlO2新型晶体的结构分析. 物理学报, 2006, 55(7): 3536-3539. doi: 10.7498/aps.55.3536
    [14] 刘廷禹, 张启仁, 庄松林. PbWO4晶体中铅空位相关的色心模型. 物理学报, 2005, 54(2): 863-867. doi: 10.7498/aps.54.863
    [15] 黄桂芹, 刘 楣, 陈凌孚. KMgF3晶体的色心和自陷态激子研究. 物理学报, 2005, 54(4): 1702-1706. doi: 10.7498/aps.54.1702
    [16] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, 2004, 53(6): 1810-1814. doi: 10.7498/aps.53.1810
    [17] 付圣贵, 范万德, 张 强, 王 志, 李丽君, 张春书, 袁树忠, 董孝义. 光纤光栅选频掺Yb3+双包层光纤激光器. 物理学报, 2004, 53(12): 4262-4267. doi: 10.7498/aps.53.4262
    [18] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析. 物理学报, 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
    [19] 高祀建, 欧阳世翕. γ射线辐照对电熔石英玻璃介电性质的影响. 物理学报, 2003, 52(5): 1292-1296. doi: 10.7498/aps.52.1292
    [20] 胡恺生, 李宗祥, 宁鼎, 李浩, 周建平, 刘全民. 电子辐照对掺铒单模光纤损耗特性的影响. 物理学报, 1991, 40(4): 560-567. doi: 10.7498/aps.40.560
计量
  • 文章访问数:  2981
  • PDF下载量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-30
  • 修回日期:  2014-06-09
  • 刊出日期:  2014-10-05

γ射线辐照对掺Yb光纤材料性能的影响

  • 1. 华中科技大学, 武汉光电国家实验室, 武汉 430074
    基金项目: 国家自然科学基金(批准号:61378070)和湖北省自然科学基金(批准号:ZRY0535)资助的课题.

摘要: 采用改进的化学气相沉积法制备掺Yb石英光纤预制棒,以该预制棒制备了尺寸为10/130 μm的双包层掺Yb光纤,将这些光纤分成若干组,在不同剂量的60Co γ辐射源下辐照,测试了光纤在辐射前后的吸收谱和激光性能以及光纤预制棒切片辐照后的吸收. 实验结果表明:光纤中已存在的色心缺陷(如氧空位(Ⅱ))和辐照引起的色心缺陷(如E'心、过氧基以及Yb2+离子)等因素的叠加作用可能导致辐照后的光纤在可见光区域的吸收显著增大;与辐照前相比,辐照后光纤的斜率效率、光-光效率显著下降,剂量越大激光性能下降得越厉害;基于Power-Law定理拟合了光纤辐致损耗与所受剂量的关系曲线,定量分析了不同剂量辐照后光纤激光性能下降的原因. 研究结果将为进一步发展抗辐照光纤提供理论和实验依据.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回