搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌添加对大尺寸金刚石生长的影响

周振翔 贾晓鹏 李勇 颜丙敏 王方标 房超 陈宁 李亚东 马红安

引用本文:
Citation:

锌添加对大尺寸金刚石生长的影响

周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安

Effect of additive zinc on larger diamond crystal growth

Zhou Zhen-Xiang, Jia Xiao-Peng, Li Yong, Yan Bing-Min, Wang Fang-Biao, Fang Chao, Chen Ning, Li Ya-Dong, Ma Hong-An
PDF
导出引用
  • 利用温度梯度法,在6.26.4 GPa, 12701400 ℃条件下,通过在NiMnCo-C体系中添加不同比例的锌粉成功合成出3 mm左右的大尺寸金刚石单晶. 研究了锌添加对金刚石颜色、形貌、内部氮杂质以及晶体结晶度的影响. 结果表明: 随着锌添加量逐渐增加, 晶体的颜色逐渐变浅, 晶体的透光性增强; 当锌添加比例达到3 wt.%时, 晶体表面出现大量不规则的凹坑; 晶体内氮杂质主要以C心形式存在, 随着锌添加量的增多晶体内氮含量逐渐降低, 基于锌的除氮能力总结出两种可能的除氮机制; 拉曼光谱测试结果表明, 在锌添加量小于3.0 wt.%的研究范围内, 锌的添加有利于提高晶体的结晶度. 本研究不仅有助于天然金刚石形成机制的探究, 而且对丰富金刚石的种类以及扩展人工合成金刚石的应用领域都有着重要意义.
    The large single crystal diamonds are successfully synthesized in a NiMnCo-C system with the zinc additive in a series of the experiments at temperatures of 1270-1400 ℃ and pressures of 6.2-6.4 GPa by the temperature gradient growth. Morphology and structural properties of the synthesized diamond are characterized by optical microscope and scanning electron microscopy. The Raman spectrum is used to investigate the crystallization of synthesized diamond. The results show that the colors of synthetic diamond crystals change from yellow to light yellow and nearly disappears with the increase of the zinc additive. There are a large number of irregular pits in the surface of diamond crystal when the zinc additive is increased up to 3.0 wt.%. the Fourier transform infrared spectroscopy spectra reveal that the nitrogen impurity in the synthetic diamond crystal is predominantly in the form of C center (single substitutional nitrogen atoms), and the nitrogen concentration decreases with the increase of zinc additive. Two possibilities that the zinc powders can be used as the nitrogen getter are given. the Raman spectrum shows that the diamond crystallization can be improved when the zinc additive is less than 3.0 wt.%. We believe that our work is greatly helpful for deeply understanding the natural diamond genesis, enriching the types of diamonds, and expanding the application areas of synthetic diamond.
    • 基金项目: 国家自然科学基金(批准号: 51172089)、贵州省教育厅重点项目(批准号: KY[2013]183)和吉林大学研究生创新基金(批准号: 2014007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant No. KY[2013]183), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2014007).
    [1]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [2]

    Isoya J, Kanda H, Akaishi M, Morita Y, Ohshima T 1997 Diamond Relat. Mater. 6 356

    [3]

    Li Y, Jia P X, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 Cryst. Eng. Commun. 16 7547

    [4]

    Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102 (in Chinese) [胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 物理学报 61 078102]

    [5]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [6]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [7]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [8]

    Singhal S K, Kanda H 1995 J. Cryst. Growth 154 297

    [9]

    Wakatsuki M 1966 Jpn. J. Appl. Phys. 5 337

    [10]

    Hosomi S 1984 Mater. Res. Bull. 19 479

    [11]

    Hosomi S, Nakamura Y, Tanaka S 1988 Science and Technology of New Diamond Tokyo, Japan, October 24-26, 1988 pp239-243

    [12]

    Kanda H, Singhal S K 1995 J. Cryst. Growth 154 297

    [13]

    Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth Des. 9 2922

    [14]

    Akella J, Ganguly J, Grover R, Kennedy G 1973 J. Phys. Chem. Solids 34 631

    [15]

    Kanda H, Akaishi M, Yamaoka S 1994 Appl. Phys. Lett. 65 784

    [16]

    Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Hu M H, Huang G F, Li Y, Jia X P 2011 Diamond Relat. Mater. 3 468

    [17]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269

    [18]

    Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743

    [19]

    Liang Z Z, Jia X, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932

    [20]

    Liang Z Z, Liang J Q, Zheng N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039 (in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039]

    [21]

    Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441

    [22]

    Kanda H 2000 Braz. J. Phys. 30 482

    [23]

    Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349

    [24]

    Sumiya H, Satoh S 1996 Diamond Relat. Mater. 5 1359

    [25]

    Sun S S, Jia X P, Zhang Z F, Li Y, Yan B M, Liu X B, Ma H A 2013 J. Cryst. Growth 377 22

  • [1]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [2]

    Isoya J, Kanda H, Akaishi M, Morita Y, Ohshima T 1997 Diamond Relat. Mater. 6 356

    [3]

    Li Y, Jia P X, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 Cryst. Eng. Commun. 16 7547

    [4]

    Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102 (in Chinese) [胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 物理学报 61 078102]

    [5]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [6]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [7]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [8]

    Singhal S K, Kanda H 1995 J. Cryst. Growth 154 297

    [9]

    Wakatsuki M 1966 Jpn. J. Appl. Phys. 5 337

    [10]

    Hosomi S 1984 Mater. Res. Bull. 19 479

    [11]

    Hosomi S, Nakamura Y, Tanaka S 1988 Science and Technology of New Diamond Tokyo, Japan, October 24-26, 1988 pp239-243

    [12]

    Kanda H, Singhal S K 1995 J. Cryst. Growth 154 297

    [13]

    Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth Des. 9 2922

    [14]

    Akella J, Ganguly J, Grover R, Kennedy G 1973 J. Phys. Chem. Solids 34 631

    [15]

    Kanda H, Akaishi M, Yamaoka S 1994 Appl. Phys. Lett. 65 784

    [16]

    Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Hu M H, Huang G F, Li Y, Jia X P 2011 Diamond Relat. Mater. 3 468

    [17]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269

    [18]

    Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743

    [19]

    Liang Z Z, Jia X, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932

    [20]

    Liang Z Z, Liang J Q, Zheng N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039 (in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039]

    [21]

    Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441

    [22]

    Kanda H 2000 Braz. J. Phys. 30 482

    [23]

    Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349

    [24]

    Sumiya H, Satoh S 1996 Diamond Relat. Mater. 5 1359

    [25]

    Sun S S, Jia X P, Zhang Z F, Li Y, Yan B M, Liu X B, Ma H A 2013 J. Cryst. Growth 377 22

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [3] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [6] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [7] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [8] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [9] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [10] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [11] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [12] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征. 物理学报, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [13] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [14] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构. 物理学报, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [15] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究. 物理学报, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [16] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [17] 李荣斌. 硼/氮原子共注入金刚石的原子级研究. 物理学报, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [18] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为. 物理学报, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [19] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [20] 李荣斌, 戴永兵, 胡晓君, 沈荷生, 何贤昶. 能量粒子轰击金刚石的计算机模拟. 物理学报, 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
计量
  • 文章访问数:  4394
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-27
  • 修回日期:  2014-08-19
  • 刊出日期:  2014-12-05

/

返回文章
返回