搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

覆盖可见光波长的掺Er光纤飞秒光学频率梳

刘欢 曹士英 孟飞 林百科 方占军

引用本文:
Citation:

覆盖可见光波长的掺Er光纤飞秒光学频率梳

刘欢, 曹士英, 孟飞, 林百科, 方占军

Er-fiber femtosecond optical frequency comb covering visible light

Liu Huan, Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun
PDF
导出引用
  • 飞秒光学频率梳波长覆盖范围向可见光波长扩展对于碘稳频激光的绝对频率测量以及光钟研究中钟激光的绝对频率测量都具有十分重要的意义. 本文在自行研制掺Er光纤飞秒光学频率梳的基础上, 采用放大-倍频-扩谱的方案, 实现了激光输出波长向可见光波长的扩展. 掺Er光纤飞秒光学频率梳输出的一部分光激光脉冲, 功率约为8 mW, 首先经掺Er光纤放大器将功率提高到531 mW, 此后利用MgO: PPLN晶体倍频, 倍频后激光的功率为170 mW, 倍频效率为32%, 脉冲宽度为85 fs. 倍频后的激光通过光子晶体光纤进行光谱展宽. 通过优化入射光偏振状态可以实现波长覆盖500-1000 nm, 输出功率为85 mW, 耦合效率为50%. 采用小型化碘稳频532 nm Nd: YAG激光器输出激光与光学频率梳光谱展宽后的激光进行拍频可以获得30 dB的拍频信号. 覆盖可见光波长的掺Er光纤飞秒光学频率梳为可见光范围内激光的绝对频率测量提供了技术手段.
    Femtosecond optical frequency combs (FOFCs) with output wavelengths covering visible light have potential applications in absolute frequency measureflent of iodine-stabilized lasers and optical clock lasers. Based on optical amplification, frequency doubling and spectrum broadening, a home-made Er-fiber femtosecond optical frequency comb (Er-FOFC) with output wavelengths covering visible light is demonstrated. One path with an average power of 8 mW from Er-FOFC is used as the seed pulse for spectrum broadening to cover the visible light. This path is first amplified to 532 mW by injecting into an Er-doped femtosecond fiber amplifier with combined forward and backward pumping and then frequency doubled with a MgO: PPLN crystal with an output power of 85 mW, frequency-doubling efficiency of 32% and pulse duration of 85fs. The output power of this path can be first amplified to 532 mW through an Er-doped femtosecond fiber amplifier when the forward pumping and backward pumping both turn on. Then the frequency-doubling laser can be generated in a MgO: PPLN crystal. The frequency-doubling efficiency is 32% and the pulse duration is 85 fs; the frequency-doubling light is spectrally broadened from 500 to 1000 nm in a photonic crystal fiber (PCF), with an output power of 85 mW and coupling efficiency of 50%. To verify the performance of the broadened spectrum, the light from the Er-FOFC and a compact iodine-stabilized frequency-doubled Nd: YAG laser at 532 nm is beaten. A beat signal with a signal-to-noise ratio of 30 dB at 100 kHz RBW is obtained, which provides a useful tool for absolute frequency measureflent of visible lasers.
    • 基金项目: 清华大学自主科研计划(批准号: 20131089299), 质检公益性行业科研专项(批准号: 201310007), 北京高等学校青年英才计划(批准号: YETP0087)和精密测试技术及仪器国家重点实验室开放基金(批准号: pil1201)资助的课题.
    • Funds: Project supported by the Tsinghua University Initiative Scientific Research Program, China (Grant No. 20131089299), the Special Scientific Research Foundation of General Administration of Quality Supervision, Inspection and Quarantine of China (Grant No. 20130007), the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0087), and the State Key Laboratory of Precision Measuring Technology and Instruments of China (Grant No. pil1201).
    [1]

    Udem Th, Reichert J, Holzwarth R, Hänsch T W 1999 Phys. Rev. Lett. 82 3568

    [2]

    Stone J A, Egan P 2010 J. Res. Natl. Inst. Stand. Technol. 115 413

    [3]

    Kohno T, Yasuda M, Hosaka K, Inaba H, Nakajima Y, Hong F L 2009 Appl. Phys. Express 2 072501

    [4]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, and Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [5]

    Campbell G K, Ludlow A D, Blatt S, Thomsen J W, Martin M J, de Miranda M H G, Zelevinsky T, Boyd M M, Ye J, Diddams S A, Heavner Th P, Parker Th E, Jefferts S R 2008 Metrologia. 45 539

    [6]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [7]

    Thorpe M J, Balslev-Clausen D, Kirchner M S, Ye J 2008 Opt. Express 16 2387

    [8]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [9]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [10]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250

    [11]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015

    [12]

    Peng J L, Ahn H, Shu R H, Chui H C, Nicholson J W 2007 Appl. Phys. B 86 49

    [13]

    Kieu K, Jones R J, Peyghambarian N 2010 Opt. Express 18 21350

    [14]

    Cao S Y, Cai Y, Wang G Z, Meng F, Zhang Z G, Fang Z J, Li T C 2011 Acta Phys. Sin. 60 094208 (in Chinese) [曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初 2011 物理学报 60 094208]

    [15]

    Lea S N, Rowley W R C, Margolis H S, Barwood G P, Huang G, Gill P 1, Chartier J M, Windeler R S 2003 Metrologia 40 844

    [16]

    Eickhoff M L, Hall J L 1995 IEE E T rans. Inst rum. Meas. 44 155

    [17]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102

    [18]

    Fujieda M, Kumagai M, Nagano S, Yamaguchi A, Hachisu H, Ido T 2011 Opt. Express 19 16498

    [19]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W 2008 Science 319 1805

    [20]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [21]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chinese J. Lasers 41 0902002 (in Chinese) [林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 0902002]

  • [1]

    Udem Th, Reichert J, Holzwarth R, Hänsch T W 1999 Phys. Rev. Lett. 82 3568

    [2]

    Stone J A, Egan P 2010 J. Res. Natl. Inst. Stand. Technol. 115 413

    [3]

    Kohno T, Yasuda M, Hosaka K, Inaba H, Nakajima Y, Hong F L 2009 Appl. Phys. Express 2 072501

    [4]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, and Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [5]

    Campbell G K, Ludlow A D, Blatt S, Thomsen J W, Martin M J, de Miranda M H G, Zelevinsky T, Boyd M M, Ye J, Diddams S A, Heavner Th P, Parker Th E, Jefferts S R 2008 Metrologia. 45 539

    [6]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [7]

    Thorpe M J, Balslev-Clausen D, Kirchner M S, Ye J 2008 Opt. Express 16 2387

    [8]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [9]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [10]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250

    [11]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015

    [12]

    Peng J L, Ahn H, Shu R H, Chui H C, Nicholson J W 2007 Appl. Phys. B 86 49

    [13]

    Kieu K, Jones R J, Peyghambarian N 2010 Opt. Express 18 21350

    [14]

    Cao S Y, Cai Y, Wang G Z, Meng F, Zhang Z G, Fang Z J, Li T C 2011 Acta Phys. Sin. 60 094208 (in Chinese) [曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初 2011 物理学报 60 094208]

    [15]

    Lea S N, Rowley W R C, Margolis H S, Barwood G P, Huang G, Gill P 1, Chartier J M, Windeler R S 2003 Metrologia 40 844

    [16]

    Eickhoff M L, Hall J L 1995 IEE E T rans. Inst rum. Meas. 44 155

    [17]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102

    [18]

    Fujieda M, Kumagai M, Nagano S, Yamaguchi A, Hachisu H, Ido T 2011 Opt. Express 19 16498

    [19]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W 2008 Science 319 1805

    [20]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [21]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chinese J. Lasers 41 0902002 (in Chinese) [林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 0902002]

  • [1] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [2] 曹士英, 林百科, 袁小迪, 丁永今, 孟飞, 方占军. 掺Er光纤飞秒激光器中电光晶体对激光器参数的影响. 物理学报, 2021, 70(7): 074203. doi: 10.7498/aps.70.20201564
    [3] 秦爽, 王兆华, 王羡之, 何会军, 沈忠伟, 魏志义. 饱和功率密度下线性啁啾对交叉偏振波输出特性的影响. 物理学报, 2017, 66(9): 094206. doi: 10.7498/aps.66.094206
    [4] 刘欢, 曹士英, 于洋, 林百科, 方占军. 级联掺Yb增益光纤提高拍频信号信噪比的实验研究. 物理学报, 2017, 66(2): 024206. doi: 10.7498/aps.66.024206
    [5] 刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚. 基于光纤的光学频率传递研究. 物理学报, 2015, 64(12): 120602. doi: 10.7498/aps.64.120602
    [6] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [7] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [8] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [9] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [10] 曹士英, 孟飞, 方占军, 李天初. 掺Er光纤飞秒激光器中高信噪比载波包络位相偏移频率获取的实验研究. 物理学报, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [11] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [12] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [13] 曹士英, 方占军, 孟飞, 王强, 李天初. 双路光谱展宽的钛宝石飞秒光学频率梳系统. 物理学报, 2011, 60(8): 080601. doi: 10.7498/aps.60.080601
    [14] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测. 物理学报, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [15] 吴洪, 王燕玲, 丁良恩. 双色场下紫外超短脉冲的频谱展宽. 物理学报, 2010, 59(6): 3973-3978. doi: 10.7498/aps.59.3973
    [16] 曹士英, 宋振明, 秦瑀, 王清月, 张志刚. 飞秒激光在不同位置温度梯度的惰性气体中成丝及光谱展宽的差异. 物理学报, 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [17] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 利用空心光纤探测飞秒脉冲在氩气中成丝过程中的光谱演变. 物理学报, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [18] 方占军, 王 强, 王民明, 孟 飞, 林百科, 李天初. 飞秒光梳和碘稳频532nm Nd:YAG激光频率的测量. 物理学报, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
    [19] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [20] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 束缚高压强气体中成丝的空心毛细管芯径对光谱展宽的影响. 物理学报, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
计量
  • 文章访问数:  5077
  • PDF下载量:  862
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-02
  • 修回日期:  2014-11-07
  • 刊出日期:  2015-05-05

覆盖可见光波长的掺Er光纤飞秒光学频率梳

  • 1. 清华大学精密仪器系, 激光与光子技术研究室, 北京 100084;
  • 2. 中国计量科学研究院, 时间频率计量研究所, 北京 100029
    基金项目: 清华大学自主科研计划(批准号: 20131089299), 质检公益性行业科研专项(批准号: 201310007), 北京高等学校青年英才计划(批准号: YETP0087)和精密测试技术及仪器国家重点实验室开放基金(批准号: pil1201)资助的课题.

摘要: 飞秒光学频率梳波长覆盖范围向可见光波长扩展对于碘稳频激光的绝对频率测量以及光钟研究中钟激光的绝对频率测量都具有十分重要的意义. 本文在自行研制掺Er光纤飞秒光学频率梳的基础上, 采用放大-倍频-扩谱的方案, 实现了激光输出波长向可见光波长的扩展. 掺Er光纤飞秒光学频率梳输出的一部分光激光脉冲, 功率约为8 mW, 首先经掺Er光纤放大器将功率提高到531 mW, 此后利用MgO: PPLN晶体倍频, 倍频后激光的功率为170 mW, 倍频效率为32%, 脉冲宽度为85 fs. 倍频后的激光通过光子晶体光纤进行光谱展宽. 通过优化入射光偏振状态可以实现波长覆盖500-1000 nm, 输出功率为85 mW, 耦合效率为50%. 采用小型化碘稳频532 nm Nd: YAG激光器输出激光与光学频率梳光谱展宽后的激光进行拍频可以获得30 dB的拍频信号. 覆盖可见光波长的掺Er光纤飞秒光学频率梳为可见光范围内激光的绝对频率测量提供了技术手段.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回