搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子入射角度对聚酰亚胺二次电子发射系数的影响

翁明 胡天存 曹猛 徐伟军

引用本文:
Citation:

电子入射角度对聚酰亚胺二次电子发射系数的影响

翁明, 胡天存, 曹猛, 徐伟军

Effects of electron incident angle on the secondary electron yield for polyimide

Weng Ming, Hu Tian-Cun, Cao Meng, Xu Wei-Jun
PDF
导出引用
  • 采用具有负偏压收集极的二次电子发射系数测试系统, 对聚酰亚胺样品的二次电子发射系数与入射电子角度和入射电子能量的关系进行了测量. 测量结果表明, 在电子小角度入射样品的情况下, 随着入射角度的增加, 二次电子发射系数单调增加, 并符合传统的规律, 但是在电子大角度入射时, 却与此不符合. 测量显示, 出现偏差时对应的临界电子入射角度随着入射电子能量的降低而减小. 采用简化的电子弹性散射过程和卢瑟福弹性散射截面公式对这种偏差的出现进行了分析, 并推导出修正后的二次电子发射系数的计算公式. 修正后的二次电子发射系数的计算结果更加符合实验结果.
    Relationship between secondary electron yield (SEY) and electron incident angle has been measured for a polyimide sample. SEY as a function of incident angle at different incident electron energy is measured by use of a system with a single pulsed electron beam and a special surface charge neutralization technology based on the negatively biased collector. Measured results show that the SEY may deviate from the traditional law of monotonic increase with the incident angle when the angle is higher than a certain critical value. This deviation is even more obvious at lower incident electron energy. The critical incident angle decreases with decreasing incident energy. A theoretical analysis on the deviation is given in a simplified electron elastic scattering process. The distribution of the scattering region has an important effect on the relation of SEY versus incident angles. A sector region is introduced to describe the electron scattering region. Due to the limit of sample surface, the electron scattering region will decrease if the angle between the incident direction and the sample surface is smaller than half of the central angle of the sector. Corresponding SEY might no longer increase. Based on the Rutherford’s elastic scattering formula, a formula for the critical incident angle is derived as a function of incident electron energy, which is also confirmed by our measurement results. Finally, a revised SEY computation formula is developed which can give more accurate results at high incident electron angle.
    • 基金项目: 国家自然科学基金(批准号: 11375139, 11175140)和空间微波技术国家重点实验室基金(批准号: 9140C530101130C53013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375139, 11175140), and the Foundation of National Key Laboratory of Space Microwave Technology, China (Grant No. 9140C530101130C53013).
    [1]

    Liang T, Makita Y, Kimura S 2001 Polymer 42 4867

    [2]

    Zhang Q P, Wen L, Xiang W W, Zeng H J, He L W, Chu J R 2011 Chinese Journal of Vacuum Science and Technology 31 114 (in Chinese) [张秋萍, 文莉, 向伟玮, 曾洪江, 何利文, 褚家如 2011 真空科学与技术学报 31 114]

    [3]

    Fujii H, Okumura T, Takahashi M 2014 Electr. Eng. Jpn. 188 9

    [4]

    Molinie P, Dessante P, Hanna R, Paulmier T, Dirassen B, Belhaj M, Payan D, Balcon N 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1215

    [5]

    Griseri V, Perrin C, Laurent C 2009 J. Electrost. 67 400

    [6]

    Cao S Z, Chen X K, Wang X Y, Han C, Yang J P 2013 Chinese Journal of Vacuum Science and Technology 33 751 (in Chinese) [曹生珠, 陈学康, 王熙元, 韩闯, 杨建平 2013 真空科学与技术学报 33 751]

    [7]

    Lanzerotti L J, Breglia C, Maurer D W, Johnson G K, Maclennan C G 1998 Advances in Space Research 22 79

    [8]

    Nagasawa K, Honjoh M, Miyake H, Watanabe R, Tanaka Y, Takada T 2010 IEEJ Trans. Electr. Electron. Eng. 5 410

    [9]

    Insepov Z, Ivanov V, Frisch H 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3315

    [10]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [11]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 物理学报 61 241401]

    [12]

    Schwarz S A 1990 J. Appl. Phys. 68 2382

    [13]

    Weng M, Cao M, Zhao H J, Zhang H B 2014 Rev. Sci. Instrum. 85 036108

    [14]

    Weng M, Cao M, Zhao H J, Zhang H B 2014 Chinese Journal of Vacuum Science and Technology 34 1262 (in Chinese) [翁明, 曹猛, 赵红娟, 张海波 2014 真空科学与技术学报 34 1262]

    [15]

    Shih A, Hor C 1993 IEEE Trans. Electron Devices 40 824

    [16]

    Kirby R E, King F K 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 469 1

    [17]

    Suharyanto, Yamano Y, Kobayashi S, Michizono S, Saito Y 2007 IEEE Trns. Dielectr. Electr. Insul. 14 620

    [18]

    Yang W J, Li Y D, Liu C L 2013 Acta Phys. Sin. 62 087901 (in Chinese) [杨文晋, 李永东, 刘纯亮 2013 物理学报 62 087901]

    [19]

    Balcon N, Payan D, Belhaj M, Tondu T, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282

    [20]

    Cui Z 2009 Micro-nanofabrication Technologies and Applications 2nd Edition (Beijing:Higher Education Press) pp130-136 (in Chinese) [崔铮 2009 微纳米加工技术及其应用 第 2 版(北京:高等教育出版社)第130-136页]

    [21]

    Yang F J 1985 Atomic Physics (Shanghai:Shanghai Science and Technology Press) pp16-18 (in Chinese) [杨福家 1985 原子物理学(上海:上海科技出版社) 第16-18页]

    [22]

    Lin Y H, Joy D C 2005 Surf. Interface Anal. 37 895

    [23]

    Chen Y, Kouno T, Toyoda K, Cho M G 2011 Appl. Phys. Lett. 99 152101

  • [1]

    Liang T, Makita Y, Kimura S 2001 Polymer 42 4867

    [2]

    Zhang Q P, Wen L, Xiang W W, Zeng H J, He L W, Chu J R 2011 Chinese Journal of Vacuum Science and Technology 31 114 (in Chinese) [张秋萍, 文莉, 向伟玮, 曾洪江, 何利文, 褚家如 2011 真空科学与技术学报 31 114]

    [3]

    Fujii H, Okumura T, Takahashi M 2014 Electr. Eng. Jpn. 188 9

    [4]

    Molinie P, Dessante P, Hanna R, Paulmier T, Dirassen B, Belhaj M, Payan D, Balcon N 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1215

    [5]

    Griseri V, Perrin C, Laurent C 2009 J. Electrost. 67 400

    [6]

    Cao S Z, Chen X K, Wang X Y, Han C, Yang J P 2013 Chinese Journal of Vacuum Science and Technology 33 751 (in Chinese) [曹生珠, 陈学康, 王熙元, 韩闯, 杨建平 2013 真空科学与技术学报 33 751]

    [7]

    Lanzerotti L J, Breglia C, Maurer D W, Johnson G K, Maclennan C G 1998 Advances in Space Research 22 79

    [8]

    Nagasawa K, Honjoh M, Miyake H, Watanabe R, Tanaka Y, Takada T 2010 IEEJ Trans. Electr. Electron. Eng. 5 410

    [9]

    Insepov Z, Ivanov V, Frisch H 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3315

    [10]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [11]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 物理学报 61 241401]

    [12]

    Schwarz S A 1990 J. Appl. Phys. 68 2382

    [13]

    Weng M, Cao M, Zhao H J, Zhang H B 2014 Rev. Sci. Instrum. 85 036108

    [14]

    Weng M, Cao M, Zhao H J, Zhang H B 2014 Chinese Journal of Vacuum Science and Technology 34 1262 (in Chinese) [翁明, 曹猛, 赵红娟, 张海波 2014 真空科学与技术学报 34 1262]

    [15]

    Shih A, Hor C 1993 IEEE Trans. Electron Devices 40 824

    [16]

    Kirby R E, King F K 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 469 1

    [17]

    Suharyanto, Yamano Y, Kobayashi S, Michizono S, Saito Y 2007 IEEE Trns. Dielectr. Electr. Insul. 14 620

    [18]

    Yang W J, Li Y D, Liu C L 2013 Acta Phys. Sin. 62 087901 (in Chinese) [杨文晋, 李永东, 刘纯亮 2013 物理学报 62 087901]

    [19]

    Balcon N, Payan D, Belhaj M, Tondu T, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282

    [20]

    Cui Z 2009 Micro-nanofabrication Technologies and Applications 2nd Edition (Beijing:Higher Education Press) pp130-136 (in Chinese) [崔铮 2009 微纳米加工技术及其应用 第 2 版(北京:高等教育出版社)第130-136页]

    [21]

    Yang F J 1985 Atomic Physics (Shanghai:Shanghai Science and Technology Press) pp16-18 (in Chinese) [杨福家 1985 原子物理学(上海:上海科技出版社) 第16-18页]

    [22]

    Lin Y H, Joy D C 2005 Surf. Interface Anal. 37 895

    [23]

    Chen Y, Kouno T, Toyoda K, Cho M G 2011 Appl. Phys. Lett. 99 152101

  • [1] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响. 物理学报, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [2] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [3] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理. 物理学报, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [4] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射. 物理学报, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [5] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性. 物理学报, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [6] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律. 物理学报, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [7] 张辉, 杨洋, 李志青. 三维a-IGZO薄膜中的电子-电子散射. 物理学报, 2016, 65(16): 167301. doi: 10.7498/aps.65.167301
    [8] 胡杨, 杨海亮, 孙剑锋, 孙江, 张鹏飞. 强流电子束入射角二维分布测量方法. 物理学报, 2015, 64(24): 245203. doi: 10.7498/aps.64.245203
    [9] 刘婧, 张海波. 空间多能电子辐照聚合物充电过程的稳态特性. 物理学报, 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [10] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [11] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用. 物理学报, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [12] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究. 物理学报, 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [13] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [14] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [15] 施德恒, 孙金锋, 刘玉芳, 朱遵略, 马 恒. 50—5000 eV电子被C4H8O, C5H10O2, C6H5CH3和C4H8O2散射的总截面. 物理学报, 2008, 57(12): 7612-7618. doi: 10.7498/aps.57.7612
    [16] 施德恒, 孙金锋, 朱遵略, 刘玉芳. 一种考虑几何屏蔽效应的计算“电子-分子”散射总截面的可加性规则修正方法. 物理学报, 2008, 57(3): 1632-1639. doi: 10.7498/aps.57.1632
    [17] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面. 物理学报, 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [18] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略. 一种计算中、高能电子被分子散射总截面的修正势方法. 物理学报, 2006, 55(8): 4096-4102. doi: 10.7498/aps.55.4096
    [19] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面. 物理学报, 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
    [20] 施德恒, 孙金锋, 杨向东, 朱遵略, 刘玉芳. 中高能电子被甲烷及氯代甲烷散射的总截面. 物理学报, 2005, 54(5): 2019-2024. doi: 10.7498/aps.54.2019
计量
  • 文章访问数:  3862
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-12
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-08-05

电子入射角度对聚酰亚胺二次电子发射系数的影响

  • 1. 西安交通大学电子科学与技术系电子物理与器件教育部重点实验室, 西安 710049;
  • 2. 西安空间无线电技术研究所空间微波技术重点实验室, 西安 710100
    基金项目: 国家自然科学基金(批准号: 11375139, 11175140)和空间微波技术国家重点实验室基金(批准号: 9140C530101130C53013)资助的课题.

摘要: 采用具有负偏压收集极的二次电子发射系数测试系统, 对聚酰亚胺样品的二次电子发射系数与入射电子角度和入射电子能量的关系进行了测量. 测量结果表明, 在电子小角度入射样品的情况下, 随着入射角度的增加, 二次电子发射系数单调增加, 并符合传统的规律, 但是在电子大角度入射时, 却与此不符合. 测量显示, 出现偏差时对应的临界电子入射角度随着入射电子能量的降低而减小. 采用简化的电子弹性散射过程和卢瑟福弹性散射截面公式对这种偏差的出现进行了分析, 并推导出修正后的二次电子发射系数的计算公式. 修正后的二次电子发射系数的计算结果更加符合实验结果.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回