搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场下CdSe的基态性质和光谱特性研究

吴永刚 李世雄 郝进欣 徐梅 孙光宇 令狐荣锋

引用本文:
Citation:

外电场下CdSe的基态性质和光谱特性研究

吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋

Properties of ground state and spectrum of CdSe in different external electric fields

Wu Yong-Gang, Li Shi-Xiong, Hao Jin-Xin, Xu Mei, Sun Guang-Yu, Linghu Rong-Feng
PDF
导出引用
  • 采用密度泛函(DFT)B3PW91方法在Lanl2dz基组下优化得到CdSe分子的基态稳定构型, 并研究了外电场对CdSe基态分子的总能量、HOMO能级、LUMO能级、能隙、电偶极矩μ、电荷布居、红外光谱的影响. 在相同的基组下用TD-DFT 方法计算了外电场下CdSe分子的前9个激发态的激发能、激发波长和振子强度. 结果表明: 无电场时CdSe分子的激发波长与实验结果符合较好, 相应的激发能也很接近. 随着电场增加, CdSe基态分子键长、偶极矩、红外谱强度先减小后增大; HOMO能级、LUMO能级、能隙随电场增加而减小; 总能量、谐振频率则是先增大后减小. 此外, 外电场对CdSe分子的激发能, 激发波长和振子强度均有较大影响.
    Density functional theoretical (B3PW91) method with LANL2 DZ basis sets has been used to study the equilibrium structure, total energy, the highest occupied molecular orbital (HOMO) energy level, the lowest unoccupied molecular orbital(LUMO) energy level, energy gap, dipole moment, atomic charge distribution, infrared intensities of CdSe ground state molecule etc. in different intense electric fields. The excitation energy, wavelengths and oscillator strengths in ground state and the first nine different excited states are investigated by the time-dependent density functional (B3PW91) method in external electric fields. Results show that the excitation wavelength is in agreement with the experimental result and the excitation energy is close to the experimental data. With the increase of the external field, the bond length, electric dipole moment, infrared intensities are observed to decrease first, and increase afterwards. But the HOMO energy, LUMO energy, energy gap are seen to decrease. And the total energy and harmonic frequency are found to increase first, and then decrease. In addition, the external electric fields have significant effects on the excitation energy, wavelength and oscillator strengths of CdSe molecule.
    • 基金项目: 国家自然科学基金(批准号: 11364007)、贵州省教育厅自然科学基金(批准号: 黔教合KY字(2012)051号)和贵州省科学技术基金(批准号: 黔科合J字[2013]2219号)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11364007), Guizhou Education Department Natural Science Foundation of China (Grant No. KY[2012]051), the Guizhou Science and Technology Foundation of China (Grant No. QKHJ,[2013]2219).
    [1]

    Murray C B, Kagan C R, Bawendi M G 2000 Annu. Rev. Mater. Sci. 30 545

    [2]

    Alivisatos A P 1996 J. Phys. Chem. 100 13226

    [3]

    Coe S, Woo W K, Bawendi M Bulović V 2002 Nature 420 800

    [4]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538

    [5]

    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A 2003 Science 302 442

    [6]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [7]

    Troparevsky M C, Chelikowsky J R 2001 J. Chem. Phys. 114 943

    [8]

    Jha P C, Seal P, Sen S, Ögren H, Chakrabarti S 2008 Comput. Mater. Sci. 44 728

    [9]

    Matxain J M, Mercero J M, Fowler J E, Jesus M. Ugalde 2004 J. Phys. Chem. A 108 10502

    [10]

    Yang P, Tretiak S, Masunov A E, Ivanov S 2008 J. Chem. Phys. 129 074709

    [11]

    Wu S X, Liu H Z, Liu H M, Wu Z S, Du Z L, Schelly Z A 2007 Nanotechnology 18 485607

    [12]

    Yu M, Fernando G W, Li R, Papadimitrakopoulos F, Shi N, Ramprasad R 2006 Appl. Phys. Lett. 88 231910

    [13]

    Nadler R, Sanz J F 2013 Theor. Chem. Acc. 132 1

    [14]

    Kasuya A, Sivamohan R, Barnakov Y A, Dmitruk I M, Nirasawa T, Romanyuk V R, Kumar V, Mamykin S V, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki O, Liu Z, Belosludov R V, Sundararajan V, Kawazoe Y 2004 Nat. Mater. 3 99

    [15]

    Nagaoka M, Ishii S, Noguchi Y, Ohno K 2008 Mater. Trans. 49 2420

    [16]

    Ma M Z, Zhu Z H, Chen X J, Xu G L, Zhang Y B, Mao H P, Shen X H 2005 Chin. Phys. Soc. 14 1101

    [17]

    Cooper G, Burton G R, Chan W F, Brion C E 1995 Chem. Phys. 196 293

    [18]

    Yao D Y, Xu G L, Liu X F, Zhang X Z, Liu Y F 2011 Chin. Phys. B 20 103101

    [19]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101

    [20]

    Karamanis P, Maroulis G, Pouchan C 2006 J. Chem. Phys. 124 071101

    [21]

    Zeng W, Ding F J, Zhao K Q 2010 J. Sichuan Normal University ( Natural Science) 33 228 (in Chinese) [曾薇, 丁涪江, 赵可清 2010 四川师范大学学报 (自然科学版) 33 228]

    [22]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [23]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [24]

    Herzberg G (Translated by Wang D C) 1983 Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Beijing: Science Press) pp50 (in Chinese) [格哈德·赫兹堡 著(王鼎昌 译) 1983 分子光谱与分子结构(第一卷)(北京: 科学出版社)第50页]

  • [1]

    Murray C B, Kagan C R, Bawendi M G 2000 Annu. Rev. Mater. Sci. 30 545

    [2]

    Alivisatos A P 1996 J. Phys. Chem. 100 13226

    [3]

    Coe S, Woo W K, Bawendi M Bulović V 2002 Nature 420 800

    [4]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538

    [5]

    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A 2003 Science 302 442

    [6]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [7]

    Troparevsky M C, Chelikowsky J R 2001 J. Chem. Phys. 114 943

    [8]

    Jha P C, Seal P, Sen S, Ögren H, Chakrabarti S 2008 Comput. Mater. Sci. 44 728

    [9]

    Matxain J M, Mercero J M, Fowler J E, Jesus M. Ugalde 2004 J. Phys. Chem. A 108 10502

    [10]

    Yang P, Tretiak S, Masunov A E, Ivanov S 2008 J. Chem. Phys. 129 074709

    [11]

    Wu S X, Liu H Z, Liu H M, Wu Z S, Du Z L, Schelly Z A 2007 Nanotechnology 18 485607

    [12]

    Yu M, Fernando G W, Li R, Papadimitrakopoulos F, Shi N, Ramprasad R 2006 Appl. Phys. Lett. 88 231910

    [13]

    Nadler R, Sanz J F 2013 Theor. Chem. Acc. 132 1

    [14]

    Kasuya A, Sivamohan R, Barnakov Y A, Dmitruk I M, Nirasawa T, Romanyuk V R, Kumar V, Mamykin S V, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki O, Liu Z, Belosludov R V, Sundararajan V, Kawazoe Y 2004 Nat. Mater. 3 99

    [15]

    Nagaoka M, Ishii S, Noguchi Y, Ohno K 2008 Mater. Trans. 49 2420

    [16]

    Ma M Z, Zhu Z H, Chen X J, Xu G L, Zhang Y B, Mao H P, Shen X H 2005 Chin. Phys. Soc. 14 1101

    [17]

    Cooper G, Burton G R, Chan W F, Brion C E 1995 Chem. Phys. 196 293

    [18]

    Yao D Y, Xu G L, Liu X F, Zhang X Z, Liu Y F 2011 Chin. Phys. B 20 103101

    [19]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101

    [20]

    Karamanis P, Maroulis G, Pouchan C 2006 J. Chem. Phys. 124 071101

    [21]

    Zeng W, Ding F J, Zhao K Q 2010 J. Sichuan Normal University ( Natural Science) 33 228 (in Chinese) [曾薇, 丁涪江, 赵可清 2010 四川师范大学学报 (自然科学版) 33 228]

    [22]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [23]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [24]

    Herzberg G (Translated by Wang D C) 1983 Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Beijing: Science Press) pp50 (in Chinese) [格哈德·赫兹堡 著(王鼎昌 译) 1983 分子光谱与分子结构(第一卷)(北京: 科学出版社)第50页]

  • [1] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [2] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [3] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [4] 杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起. 外场作用下C12H4Cl4O2的分子结构和电子光谱研究. 物理学报, 2018, 67(22): 223101. doi: 10.7498/aps.67.20181454
    [5] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [7] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [8] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性. 物理学报, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [9] 江鹏, 毕卫红, 齐跃峰, 付兴虎, 武洋, 田朋飞. 光子晶体光纤重叠光栅理论模型与光谱特性研究. 物理学报, 2016, 65(20): 204208. doi: 10.7498/aps.65.204208
    [10] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [11] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [12] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [13] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [14] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学. 物理学报, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [15] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [16] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性. 物理学报, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [17] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱. 物理学报, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [18] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [19] 王防震, 陈张海, 柏利慧, 黄少华, 沈学础. CdSe/ZnSe异质结构中Zn1-xCdxSe量子岛(点)的显微荧光光谱和显微拉曼光谱研究. 物理学报, 2006, 55(5): 2628-2632. doi: 10.7498/aps.55.2628
    [20] 王防震, 陈张海, 柳 毅, 黄少华, 柏利慧, 沈学础. CdSe/ZnSe超薄层中两类量子岛(点)之间的激子转移和它们的光学性质研究. 物理学报, 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
计量
  • 文章访问数:  3563
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-03-26
  • 刊出日期:  2015-08-05

外电场下CdSe的基态性质和光谱特性研究

  • 1. 贵州师范学院, 物理与电子科学学院, 贵阳 550018;
  • 2. 贵州师范大学, 物理与电子科学学院, 贵阳 550001
    基金项目: 国家自然科学基金(批准号: 11364007)、贵州省教育厅自然科学基金(批准号: 黔教合KY字(2012)051号)和贵州省科学技术基金(批准号: 黔科合J字[2013]2219号)资助的课题.

摘要: 采用密度泛函(DFT)B3PW91方法在Lanl2dz基组下优化得到CdSe分子的基态稳定构型, 并研究了外电场对CdSe基态分子的总能量、HOMO能级、LUMO能级、能隙、电偶极矩μ、电荷布居、红外光谱的影响. 在相同的基组下用TD-DFT 方法计算了外电场下CdSe分子的前9个激发态的激发能、激发波长和振子强度. 结果表明: 无电场时CdSe分子的激发波长与实验结果符合较好, 相应的激发能也很接近. 随着电场增加, CdSe基态分子键长、偶极矩、红外谱强度先减小后增大; HOMO能级、LUMO能级、能隙随电场增加而减小; 总能量、谐振频率则是先增大后减小. 此外, 外电场对CdSe分子的激发能, 激发波长和振子强度均有较大影响.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回