搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ising耦合体系中量子傅里叶变换的优化

凌宏胜 田佳欣 周淑娜 魏达秀

引用本文:
Citation:

Ising耦合体系中量子傅里叶变换的优化

凌宏胜, 田佳欣, 周淑娜, 魏达秀

Time-optimized quantum QFT gate in an Ising coupling system

Ling Hong-Sheng, Tian Jia-Xin, Zhou Shu-Na, Wei Da-Xiu
PDF
导出引用
  • 量子傅里叶变换是量子计算中一种重要的量子逻辑门. 任意量子位的傅里叶变换可以分解为一系列普适的单比特量子逻辑门和两比特量子逻辑门, 这种分解方式使得傅里叶变换的实验实现简单直观, 但所用的实验时间显然不是最短的. 本文利用优化控制和数值计算方法对Ising耦合体系中多量子位傅里叶变换的实验时间进行优化, 优化后的实现方法明显短于传统方法. 优化方法的核磁共振实验实现验证了其有效性.
    Quantum Fourier transform (QFT) is a quantum analogue of the classical discrete Fourier transform. It is a fundamental quantum gate in quantum algorithms which has an exponential advantage over the classical computation and has been excessively studied. Normally, an n-qubit quantum Fourier transform could be resolved into the tensor product of n single-qubit operations, and each operation could be implemented by a Hadamard gate and a controlled phase gate. Then the complexity of an n-qubit QFT is of order O(n2). To reduce the complexity of quantum operations, optimal control (OC) method has recently been used successfully to find the minimum time for implementing a quantum operation. Up to now, two types of quantum optimal control methods have been presented, i.e. analytical and numerical methods. The analytical approach is to change the problem of efficient synthesis of unitary transformations into the geometrical one of finding the shortest paths. Numerical optimal control procedures are based on the gradient methods (GRAPE, Gradient Ascent Pulse Engineering) and Krotov methods. Notable application mainly focus on nuclear magnetic resonance fields, including imaging, liquid-state NMR, solid-state NMR, and NMR quantum computation. One obvious advantage of optimal control NMR quantum computation is that the OC unitary evolution transformation pulse sequences are normally shorter than the conventional corresponding ones. Here we use the optimal control method to find the minimum duration for implementing QFT quantum gate. A linear spin chain with nearest-neighbor Ising interaction is used to find the optimization. And the optimized pulse sequence is experimentally demonstrated on an NMR quantum information processor. By using optimal control method with numerical calculation, a three-qubit QFT in an indirect-linear-coupling chain system is optimized. The duration of the OC QFT is obviously shorter than that of conventional approaches. The OC pulse sequence has been experimentally implemented on a liquid-state NMR spectrometer. To verify the optimally controlled pulse sequence for the three-qubit QFT, different initial states are assumed. The accuracy of the OC pulse sequence could be demonstrated by the consistency of theoretical simulation spectra with the experimental results. The good consistency between the simulation and the experimental spectra demonstrates that the OC QFT is of high fidelity.
      通信作者: 魏达秀, dxwei@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11005039)资助的课题.
      Corresponding author: Wei Da-Xiu, dxwei@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11005039).
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Long G L 2010 Physics 39 0

    [3]

    Fu X Q, Bao W S, Li F D, Zhang Y C 2014 Chin. Phys. B 23 020306

    [4]

    Weinstein Y S, Pravia M A, Fortunato E M, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [5]

    Shor P 1994 Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Ann. Symp. on Found. Of Comp. Sci. (IEEE Comp. Soc. Press) pp124-134

    [6]

    Ekert A, Jozsa R 1996 Rev. of Mod. Phy 68 733

    [7]

    D'Ariano G M, Macchiavello C, Sacchi M F 1998 Phys. Lett. A 248 103

    [8]

    Cooley J W, Tukey J W 1965 Math Comput. 19 297

    [9]

    Pang C Y, Hu B Q 2008 Chin. Phys. B 17 3220

    [10]

    Fang X M, Zhu X W, Feng M, MaoX A, Du D 2000 Chin. Sci. Bull. 45 1071

    [11]

    Yaakov S, Weinstein W, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [12]

    Yu L B, Xue Z Y 2010 Chin. Phys. Lett. 27 070305

    [13]

    Ren G, Du J M, Yu H J 2014 Chin. Phys. B 23 024207

    [14]

    Zheng S B 2007 Common. Theor. Phys. 47 1049

    [15]

    Huang D Z, Chen Z G, Guo Y 2009 Common. Theor. Phys. 51 221

    [16]

    Beth T, Verfahren der schnellen Fourier-Transformation. Teubner, Stuttgart, 1984

    [17]

    Khaneja N, Li J S, Kehlet C, Luy B, Glaser S J 2004 Proc. Natl. Acad. Sci. USA 101 14742

    [18]

    Khaneja N, Heitmann B, Spörl A, Yuan H, Schulte-Herbrüggen T, Glaser S J 2007 Phys. Rev. A 75 012322

    [19]

    Carlini A, Koike T 2013 J. Phys. A: Math. Theor. 46 045307

    [20]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J . Magn. Reson. 172 296

    [21]

    Maximov I, Tosner Z, Nielsen N C 2008 J. Chem. Phys. 128 184505

    [22]

    Tosner Z, Vosegaard T, Kehlet C T, Khaneja N, Glaser S J, Nielsen N C 2009 J. Magn. Reson. 197 120

    [23]

    Li Z K, Yung M H, Chen H W, Lu D W, Whitfield J D, Peng X H, Aspuru-Guzik A, Du J F 2011 Sci. Rep. 1 88

    [24]

    Lu D W, Xu N Y, Xu R X, Chen HW, Gong J B, Peng X H, Du J F 2011 Phys. Rev. Lett. 107 020501

    [25]

    Feng G R, Xu G F, Long G L 2013 Phys. Rev. Lett. 110 190501

    [26]

    Feng G R, Lu Y, Hao L, Zhang F H, Long G L 2013 Sci. Rep. 3 2232

    [27]

    Wei D X, Spörl A, Chang Y, Khaneja N, Yang X D, Glaser S J 2014 Chem. Phys. Lett. 612 143

    [28]

    Schulte-Herbrüggen T, Spörl A, Khaneja N, Glaser S J 2005 Phys. Rev. A 72 042331

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Long G L 2010 Physics 39 0

    [3]

    Fu X Q, Bao W S, Li F D, Zhang Y C 2014 Chin. Phys. B 23 020306

    [4]

    Weinstein Y S, Pravia M A, Fortunato E M, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [5]

    Shor P 1994 Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Ann. Symp. on Found. Of Comp. Sci. (IEEE Comp. Soc. Press) pp124-134

    [6]

    Ekert A, Jozsa R 1996 Rev. of Mod. Phy 68 733

    [7]

    D'Ariano G M, Macchiavello C, Sacchi M F 1998 Phys. Lett. A 248 103

    [8]

    Cooley J W, Tukey J W 1965 Math Comput. 19 297

    [9]

    Pang C Y, Hu B Q 2008 Chin. Phys. B 17 3220

    [10]

    Fang X M, Zhu X W, Feng M, MaoX A, Du D 2000 Chin. Sci. Bull. 45 1071

    [11]

    Yaakov S, Weinstein W, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [12]

    Yu L B, Xue Z Y 2010 Chin. Phys. Lett. 27 070305

    [13]

    Ren G, Du J M, Yu H J 2014 Chin. Phys. B 23 024207

    [14]

    Zheng S B 2007 Common. Theor. Phys. 47 1049

    [15]

    Huang D Z, Chen Z G, Guo Y 2009 Common. Theor. Phys. 51 221

    [16]

    Beth T, Verfahren der schnellen Fourier-Transformation. Teubner, Stuttgart, 1984

    [17]

    Khaneja N, Li J S, Kehlet C, Luy B, Glaser S J 2004 Proc. Natl. Acad. Sci. USA 101 14742

    [18]

    Khaneja N, Heitmann B, Spörl A, Yuan H, Schulte-Herbrüggen T, Glaser S J 2007 Phys. Rev. A 75 012322

    [19]

    Carlini A, Koike T 2013 J. Phys. A: Math. Theor. 46 045307

    [20]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J . Magn. Reson. 172 296

    [21]

    Maximov I, Tosner Z, Nielsen N C 2008 J. Chem. Phys. 128 184505

    [22]

    Tosner Z, Vosegaard T, Kehlet C T, Khaneja N, Glaser S J, Nielsen N C 2009 J. Magn. Reson. 197 120

    [23]

    Li Z K, Yung M H, Chen H W, Lu D W, Whitfield J D, Peng X H, Aspuru-Guzik A, Du J F 2011 Sci. Rep. 1 88

    [24]

    Lu D W, Xu N Y, Xu R X, Chen HW, Gong J B, Peng X H, Du J F 2011 Phys. Rev. Lett. 107 020501

    [25]

    Feng G R, Xu G F, Long G L 2013 Phys. Rev. Lett. 110 190501

    [26]

    Feng G R, Lu Y, Hao L, Zhang F H, Long G L 2013 Sci. Rep. 3 2232

    [27]

    Wei D X, Spörl A, Chang Y, Khaneja N, Yang X D, Glaser S J 2014 Chem. Phys. Lett. 612 143

    [28]

    Schulte-Herbrüggen T, Spörl A, Khaneja N, Glaser S J 2005 Phys. Rev. A 72 042331

  • [1] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展. 物理学报, 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [2] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法. 物理学报, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [3] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [4] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [5] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [6] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [7] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [8] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [9] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [10] 叶晶晶, 李克平, 金新民. 基于跟驰模型列车运行优化控制模拟研究. 物理学报, 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [11] 周漩, 杨帆, 张凤鸣, 周卫平, 邹伟. 复杂网络系统拓扑连接优化控制方法. 物理学报, 2013, 62(15): 150201. doi: 10.7498/aps.62.150201
    [12] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度 . 物理学报, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [13] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [14] 赵红敏, 王鹿霞. 异质结中桥分子电子转移的飞秒激光控制研究. 物理学报, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [15] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [16] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [17] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [18] 李 宏, 张永强, 程 杰, 王鹿霞, 刘德胜. 飞秒激光控制的分子量子动力学研究:(Ⅰ)三维二能级系统. 物理学报, 2007, 56(5): 3010-3016. doi: 10.7498/aps.56.3010
    [19] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [20] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
计量
  • 文章访问数:  3428
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-17
  • 修回日期:  2015-04-28
  • 刊出日期:  2015-09-05

Ising耦合体系中量子傅里叶变换的优化

  • 1. 华东师范大学物理系, 上海市磁共振重点实验室, 上海 200062
  • 通信作者: 魏达秀, dxwei@phy.ecnu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11005039)资助的课题.

摘要: 量子傅里叶变换是量子计算中一种重要的量子逻辑门. 任意量子位的傅里叶变换可以分解为一系列普适的单比特量子逻辑门和两比特量子逻辑门, 这种分解方式使得傅里叶变换的实验实现简单直观, 但所用的实验时间显然不是最短的. 本文利用优化控制和数值计算方法对Ising耦合体系中多量子位傅里叶变换的实验时间进行优化, 优化后的实现方法明显短于传统方法. 优化方法的核磁共振实验实现验证了其有效性.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回