搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑频散效应的一维非线性地震波数值模拟

周聪 王庆良

引用本文:
Citation:

考虑频散效应的一维非线性地震波数值模拟

周聪, 王庆良

One-dimension nonlinear and dispersive seismic wave modeling in solid media

Zhou Cong, Wang Qing-Liang
PDF
导出引用
  • 非线性理论是解决地学问题的重要手段, 充分认识非线性波动特征有助于解释实际观测资料中的一些特殊地震现象. 本文基于Hokstad改造的非线性本构方程, 利用交错网格有限差分法实现了固体介质中一维非线性地震波数值模拟; 采用通量校正传输方法消除非线性数值模拟中波形振荡, 提高模拟精度. 通过与解析解的对比验证了模拟结果的正确性. 研究结果显示了非线性系数对地震波的传播有重要影响, 并且当取适当的非线性和频散系数时, 地震波表现出孤立波的传播特性. 最后分析了不同的非线性地震波在固体介质中的传播演化特征.
    The nonlinear theory in Earth Science is very important for solving the problems of the earth. When considering some of the nonlinear properties of the medium, solitary wave (a special wave with a finite amplitude and a single peak or trough) may appear. Previous studies showed that it may be related to the rupture in the earthquake process. Therefore, it would be very helpful to explain some special phenomena in actual observation data if we fully understand the characteristics of nonlinear waves.#br#In this paper, based on the nonlinear acoustic wave equation, we first perform 1-D nonlinear acoustic wave modeling in solid media using a staggered grid finite difference method. To get the stable and accurate results, a flux-corrected transport method is used. Then we analyze several different types of nonlinear acoustic waves by setting different parameters to investigate their nonlinear characteristics in the solid media. Compared with the linear wave propagation, our results show that the nonlinear coefficients have important influences on the propagation of the acoustic waves. When the equations contain only a third-order nonlinear term (consider the case β 1 ≠ 0, β 2=0, α =0), the main lobe of the wave is tilted backward and its amplitude gradually attenuates with the wave spreading, and the amplitude of its front side-lobe attenuates slowly while the back side-lobe attenuates quickly. The whole shape and amplitude of the wave remain unchanged after propagating a certain distance. When the equations contain only a fourth-order nonlinear term (consider the case β 2 ≠ 0, β 1=0, α =0), the main lobe and the two side-lobes of the wave are all slowly damped, but the shape of the whole wave is unchanged with the wave spreading.#br#In addition, for some combinations of nonlinear and dispersive parameters (consider the case β 1 ≠ 0, α ≠ 0, β 2=0), the wave acts like the linear wave, and the nonlinear acoustic wave is equal to solitary wave which is usually obtained by Kortewegde de Vries (KdV) equation. We validate our modeling method by comparing our results with the analytic solitary solutions. Solitary wave propagates with a fixed velocity slightly less than that of the linear compressional wave, which is probably due to the balance between nonlinear and dispersion effects, making the stress-strain constitutive relations show the nature of linear wave.
      通信作者: 周聪, zhoucong323@126.com
    • 基金项目: 地震行业重大科研专项(批准号: 201508009)资助的课题.
      Corresponding author: Zhou Cong, zhoucong323@126.com
    • Funds: Project supported by the Special Earthquake Research Project, which is grant-aided by the China Earthquake Administration (Grant No. 201508009).
    [1]

    Zheng H S, Zhang Z J, Yang B J 2004 Acta Seis. Sin. 26 77 (in Chinese) [郑海山, 张中杰, 杨宝俊 2004 地震学报 26 77]

    [2]

    Johnson P A, McCall K R 1994 Geophys. Res. Lett. 21 165

    [3]

    Johnson P A 1996 J. Geophys. Res. 101 11553

    [4]

    Van den Abeele K E-A 1996 J. Acoust. Soc. Am. 99 3334

    [5]

    Miles J W 1980 Ann. Rev. Fl. Mech. 12 11

    [6]

    Wang Z D 2005 Mechanics in Engineering 27 86 (in Chinese) [王振东 2005 力学与实践 27 86]

    [7]

    Sharon E, Cohen G, Fineberg J 2001 Nature 410 68

    [8]

    Zhou C, Wang Q L, Wang S X 2014 Earthquake 34 112 (in Chinese) [周聪, 王庆良, 王双绪 2014 地震 34 112]

    [9]

    Wu Z L, Chen Y T 1998 Nonlinear Processes in Geophysics 5 121

    [10]

    Bykov V G 2008 Acta Geophys. 56 270

    [11]

    Bykov V G 2014 J. Seismol. 18 497

    [12]

    McCall K R 1994 J. Geophys. Res. 99 2591

    [13]

    Cheng N 1996 Geophysics 61 1935

    [14]

    Hokstad K 2004 Geophysics 69 840

    [15]

    Mandafu, Naranmandula 2009 Chinese J. Solid Mech. 30 614 (in Chinese) [满达夫, 那仁满都拉 2009 固体力学学报 30 614]

    [16]

    Mandafu, Naranmandula 2010 Acta Phys. Sin. 59 60 (in Chinese) [满达夫, 那仁满都拉 2010 物理学报 59 60]

    [17]

    Han H Y, Naranmandula, Shuang S 2012 Acta Phys. Sin. 61 059101 (in Chinese) [韩海英, 那仁满都拉, 双山 2012 物理学报 61 059101]

    [18]

    Qian Z W 2014 Chin. Phys. B 23 064301

    [19]

    Zheng H S, Zhang Z J 2005 Chinese J. Geophys. 48 660 (in Chinese) [郑海山, 张中杰 2005 地球物理学报 48 660]

    [20]

    Boris J P, Book D L 1973 J. Comput. Phys. 11 38

    [21]

    Fei T, Larner K 1995 Geophysics 60 1830

    [22]

    Yang D H, Liu E, Zhang Z J, Teng J 2002 Geophys. J. Int. 148 320

  • [1]

    Zheng H S, Zhang Z J, Yang B J 2004 Acta Seis. Sin. 26 77 (in Chinese) [郑海山, 张中杰, 杨宝俊 2004 地震学报 26 77]

    [2]

    Johnson P A, McCall K R 1994 Geophys. Res. Lett. 21 165

    [3]

    Johnson P A 1996 J. Geophys. Res. 101 11553

    [4]

    Van den Abeele K E-A 1996 J. Acoust. Soc. Am. 99 3334

    [5]

    Miles J W 1980 Ann. Rev. Fl. Mech. 12 11

    [6]

    Wang Z D 2005 Mechanics in Engineering 27 86 (in Chinese) [王振东 2005 力学与实践 27 86]

    [7]

    Sharon E, Cohen G, Fineberg J 2001 Nature 410 68

    [8]

    Zhou C, Wang Q L, Wang S X 2014 Earthquake 34 112 (in Chinese) [周聪, 王庆良, 王双绪 2014 地震 34 112]

    [9]

    Wu Z L, Chen Y T 1998 Nonlinear Processes in Geophysics 5 121

    [10]

    Bykov V G 2008 Acta Geophys. 56 270

    [11]

    Bykov V G 2014 J. Seismol. 18 497

    [12]

    McCall K R 1994 J. Geophys. Res. 99 2591

    [13]

    Cheng N 1996 Geophysics 61 1935

    [14]

    Hokstad K 2004 Geophysics 69 840

    [15]

    Mandafu, Naranmandula 2009 Chinese J. Solid Mech. 30 614 (in Chinese) [满达夫, 那仁满都拉 2009 固体力学学报 30 614]

    [16]

    Mandafu, Naranmandula 2010 Acta Phys. Sin. 59 60 (in Chinese) [满达夫, 那仁满都拉 2010 物理学报 59 60]

    [17]

    Han H Y, Naranmandula, Shuang S 2012 Acta Phys. Sin. 61 059101 (in Chinese) [韩海英, 那仁满都拉, 双山 2012 物理学报 61 059101]

    [18]

    Qian Z W 2014 Chin. Phys. B 23 064301

    [19]

    Zheng H S, Zhang Z J 2005 Chinese J. Geophys. 48 660 (in Chinese) [郑海山, 张中杰 2005 地球物理学报 48 660]

    [20]

    Boris J P, Book D L 1973 J. Comput. Phys. 11 38

    [21]

    Fei T, Larner K 1995 Geophysics 60 1830

    [22]

    Yang D H, Liu E, Zhang Z J, Teng J 2002 Geophys. J. Int. 148 320

  • [1] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制. 物理学报, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [2] 许子非, 岳敏楠, 李春. 优化递归变分模态分解及其在非线性信号处理中的应用. 物理学报, 2019, 68(23): 238401. doi: 10.7498/aps.68.20191005
    [3] 吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君. 基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生. 物理学报, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [4] 黄德财, 陈伟中, 杨安娜, 孙敏, 胡凤兰, 赵敏. 孤立波在一维复合颗粒链中传播特性的模拟研究. 物理学报, 2014, 63(15): 154502. doi: 10.7498/aps.63.154502
    [5] 那仁满都拉. 微结构固体中的孤立波及其存在条件. 物理学报, 2014, 63(19): 194301. doi: 10.7498/aps.63.194301
    [6] 韩海英, 那仁满都拉, 双山. 具微结构地壳中非线性地震波的演化. 物理学报, 2012, 61(5): 059101. doi: 10.7498/aps.61.059101
    [7] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [8] 邹建龙, 马西奎. 级联功率因数校正变换器的级间耦合非线性动力学行为分析. 物理学报, 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [9] 那仁满都拉, 韩元春. 非均匀圆柱壳中非线性波传播模型的同伦分析解法. 物理学报, 2010, 59(5): 2942-2947. doi: 10.7498/aps.59.2942
    [10] 莫嘉琪, 陈贤峰. 一类非线性扰动Nizhnik-Novikov-Veselov系统的孤立波近似解析解. 物理学报, 2010, 59(5): 2919-2923. doi: 10.7498/aps.59.2919
    [11] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解. 物理学报, 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403
    [12] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性. 物理学报, 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [13] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [14] 林万涛, 莫嘉琪, 张伟江, 陈贤峰. 激光脉冲放大器增益通量的广义变分迭代解法. 物理学报, 2008, 57(8): 4641-4645. doi: 10.7498/aps.57.4641
    [15] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [16] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [17] 朱海平, 郑春龙. (2+1)维广义Nizhnik-Novikov-Veselov系统的新严格解和复合波激发. 物理学报, 2006, 55(10): 4999-5006. doi: 10.7498/aps.55.4999
    [18] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [19] 张介秋, 梁昌洪, 王耕国, 朱家珍. 阿尔芬高斯波包演化为阿尔芬孤波的条件及阿尔芬波的调制不稳定性判据. 物理学报, 2003, 52(4): 890-895. doi: 10.7498/aps.52.890
    [20] 王登龙, 颜晓红, 唐 翌. 考虑次近邻相互作用下一维单原子链中的孤立波. 物理学报, 2000, 49(9): 1736-1740. doi: 10.7498/aps.49.1736
计量
  • 文章访问数:  3473
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-08-04
  • 刊出日期:  2015-12-05

考虑频散效应的一维非线性地震波数值模拟

  • 1. 中国地震局地质研究所, 北京 100029;
  • 2. 中国地震局第二监测中心, 西安 710054
  • 通信作者: 周聪, zhoucong323@126.com
    基金项目: 地震行业重大科研专项(批准号: 201508009)资助的课题.

摘要: 非线性理论是解决地学问题的重要手段, 充分认识非线性波动特征有助于解释实际观测资料中的一些特殊地震现象. 本文基于Hokstad改造的非线性本构方程, 利用交错网格有限差分法实现了固体介质中一维非线性地震波数值模拟; 采用通量校正传输方法消除非线性数值模拟中波形振荡, 提高模拟精度. 通过与解析解的对比验证了模拟结果的正确性. 研究结果显示了非线性系数对地震波的传播有重要影响, 并且当取适当的非线性和频散系数时, 地震波表现出孤立波的传播特性. 最后分析了不同的非线性地震波在固体介质中的传播演化特征.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回