搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质阻挡放电中同心圆环斑图的产生机理

刘伟波 董丽芳

引用本文:
Citation:

介质阻挡放电中同心圆环斑图的产生机理

刘伟波, 董丽芳

Formation mechanism of concentric-ring pattern in dielectric barrier discharge

Liu Wei-Bo, Dong Li-Fang
PDF
导出引用
  • 在氩气空气混合气体介质阻挡放电中, 得到了同心圆环斑图. 采用高速照相机拍摄了同心圆环斑图在外加电压半周期时间尺度内的放电照片, 发现放电丝是构成同心圆环斑图的基本单元. 通过对比高速照相机拍摄的连续三个正半周期和负半周期的六张放电图像, 证实肉眼看到的同心圆环斑图是由不同半周期放电位置和不同的大量放电丝长时间积累叠加产生的. 随着外加电压升高, 同心圆环斑图会演化成螺旋波, 然后重新转变成同心圆环斑图. 通过对两种斑图的形成和转化特点进行分析, 推断该螺旋波应具有和同心圆环斑图相似的动力学机理. 计算了两种斑图的放电功率, 发现功率随外加电压增加近似满足线性增长的关系. 利用相关计算的方法计算并对比了不同延迟时间下两种斑图的互相关系数, 结果表明, 同心圆环斑图的互相关系数相对较低且无明显规律, 螺旋波的互相关系数稍高且具有随延迟时间增大呈现振荡的特点.
    Concentric-ring pattern is observed in an Ar/air mixture dielectric barrier discharge. The discharge images within one half voltage circle are taken by an intensified-charge coupled device camera, indicating that the discharge filaments are the basic units of the concentric-ring pattern. By comparing the six instantaneous images corresponding to three successive positive and negative half voltages, it is proved that the concentric-ring pattern seen with naked eyes is formed by the numerous discharge filaments located at different positions during successive acquisition intervals. With applied voltage increasing, concentric-ring pattern can transform into spiral, and then into concentric-ring pattern again. By analyzing the features of formation and transformation of these two patterns, it is inferred that the two patterns have similar dynamic mechanisms. Discharge powers of concentric-ring pattern and spiral are calculated respectively, and the results show that the power increases linearly approximately with applied voltage increasing. The correlation coefficients of concentric-ring pattern are compared with those of spiral, and the results show that the correlation coefficient of concentric-ring pattern is relatively low and irregular, while the correlation coefficient of spiral is relatively high and has an oscillatory characteristic.
      通信作者: 董丽芳, donglfhbu@163.com
    • 基金项目: 国家自然科学基金(批准号: 11175054, 11375051)、河北省应用基础研究计划重点基础研究项目(批准号: 15961105D)、河北省教育厅项目(批准号: LJRC011)和山东省自然科学基金(批准号: ZR2014AQ023)资助的课题.
      Corresponding author: Dong Li-Fang, donglfhbu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175054, 11375051), the Key Basic Project supported by the Research Project in the Application Basic Research Plan of Hebei Province, China (Grant No. 15961105D), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC011), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AQ023).
    [1]

    Sinclair J, Walhout M 2012 Phys. Rev. Lett. 108 035005

    [2]

    Astrov Y A, Lodygin A N, Portsel L M 2015 Phys. Rev. E 91 032909

    [3]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2015 Plasma Sources Sci. Technol. 24 015010

    [4]

    Stauss S, Muneoka H, Ebato N, Oshima F, Pai D Z, Terashima K 2013 Plasma Sources Sci. Technol. 22 025021

    [5]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507

    [6]

    Dong L F, Shen Z K, Li B, Bai Z G 2013 Phys. Rev. E 87 042914

    [7]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817

    [8]

    Wang Y J, Dong L F, Liu W B, He Y F, Li Y H 2014 Phys. Plasmas 21 073505

    [9]

    Shang W L, Wang D Z 2007 Chin. Phys. Lett. 24 1992

    [10]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202

    [11]

    Gurevich E L, Zanin A L, Moskalenko A S, Purwins H G 2003 Phys. Rev. Lett. 91 154501

    [12]

    Dong L F, Yue H, He Y F, Fan W L, Xiao H, Chen J Y, Bai Z G 2010 Phys. Plasmas 17 082302

    [13]

    Dong L F, Yue H, Fan W L, Li Y Y, Yang Y J, Xiao H 2011 Acta Phys. Sin. 60 065206 (in Chinese) [董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红 2011 物理学报 60 065206]

    [14]

    Hörning M 2012 Phys. Rev. E 86 031912

    [15]

    Chen X J, Qiao C G, Wang L L, Zhou Z W, Tian T T, Tang G N 2013 Acta Phys. Sin. 62 128201 (in Chinese) [陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁 2013 物理学报 62 128201]

    [16]

    Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134

    [17]

    Schwabe M, Konopka U, Bandyopadhyay P, Morfill G E 2011 Phys. Rev. Lett. 106 215004

    [18]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [19]

    Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2

    [20]

    Ouyang Q 2010 Introduction to Nonlinear Science and Pattern Dynamics (Vol. 1) (Beijing: Peking University Press) p188 (in Chinese) [欧阳颀 2010 非线性科学与斑图动力学导论(第一版) (北京: 北京大学出版社) 第188页]

    [21]

    Ginn B T, Steinbock O 2004 Phys. Rev. Lett. 93 158301

    [22]

    Bansagi Jr T, Meyer K J, Steinbock O 2008 J. Chem. Phys. 128 094503

    [23]

    Deng L Y, Zhang H, Li Y Q 2010 Phys. Rev. E 81 016204

    [24]

    Dong L F, Mao Z G, Yin Z Q, Ran J X 2004 Appl. Phys. Lett. 84 5142

    [25]

    Ning L, Hu Y, Ecke R E, Ahlers G 1993 Phys. Rev. Lett. 71 2216

    [26]

    Encinas-Sanz F, Melle S, Calderón O G 2004 Phys. Rev. Lett. 93 213904

  • [1]

    Sinclair J, Walhout M 2012 Phys. Rev. Lett. 108 035005

    [2]

    Astrov Y A, Lodygin A N, Portsel L M 2015 Phys. Rev. E 91 032909

    [3]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2015 Plasma Sources Sci. Technol. 24 015010

    [4]

    Stauss S, Muneoka H, Ebato N, Oshima F, Pai D Z, Terashima K 2013 Plasma Sources Sci. Technol. 22 025021

    [5]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507

    [6]

    Dong L F, Shen Z K, Li B, Bai Z G 2013 Phys. Rev. E 87 042914

    [7]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817

    [8]

    Wang Y J, Dong L F, Liu W B, He Y F, Li Y H 2014 Phys. Plasmas 21 073505

    [9]

    Shang W L, Wang D Z 2007 Chin. Phys. Lett. 24 1992

    [10]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202

    [11]

    Gurevich E L, Zanin A L, Moskalenko A S, Purwins H G 2003 Phys. Rev. Lett. 91 154501

    [12]

    Dong L F, Yue H, He Y F, Fan W L, Xiao H, Chen J Y, Bai Z G 2010 Phys. Plasmas 17 082302

    [13]

    Dong L F, Yue H, Fan W L, Li Y Y, Yang Y J, Xiao H 2011 Acta Phys. Sin. 60 065206 (in Chinese) [董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红 2011 物理学报 60 065206]

    [14]

    Hörning M 2012 Phys. Rev. E 86 031912

    [15]

    Chen X J, Qiao C G, Wang L L, Zhou Z W, Tian T T, Tang G N 2013 Acta Phys. Sin. 62 128201 (in Chinese) [陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁 2013 物理学报 62 128201]

    [16]

    Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134

    [17]

    Schwabe M, Konopka U, Bandyopadhyay P, Morfill G E 2011 Phys. Rev. Lett. 106 215004

    [18]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [19]

    Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2

    [20]

    Ouyang Q 2010 Introduction to Nonlinear Science and Pattern Dynamics (Vol. 1) (Beijing: Peking University Press) p188 (in Chinese) [欧阳颀 2010 非线性科学与斑图动力学导论(第一版) (北京: 北京大学出版社) 第188页]

    [21]

    Ginn B T, Steinbock O 2004 Phys. Rev. Lett. 93 158301

    [22]

    Bansagi Jr T, Meyer K J, Steinbock O 2008 J. Chem. Phys. 128 094503

    [23]

    Deng L Y, Zhang H, Li Y Q 2010 Phys. Rev. E 81 016204

    [24]

    Dong L F, Mao Z G, Yin Z Q, Ran J X 2004 Appl. Phys. Lett. 84 5142

    [25]

    Ning L, Hu Y, Ecke R E, Ahlers G 1993 Phys. Rev. Lett. 71 2216

    [26]

    Encinas-Sanz F, Melle S, Calderón O G 2004 Phys. Rev. Lett. 93 213904

  • [1] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [2] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [3] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析. 物理学报, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [4] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [5] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [6] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [7] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [8] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [9] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [10] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [11] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, 2011, 60(6): 065206. doi: 10.7498/aps.60.065206
    [12] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, 2009, 58(7): 4806-4811. doi: 10.7498/aps.58.4806
    [13] 尹小舟, 刘 勇. 非连续反馈控制激发介质中的螺旋波. 物理学报, 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [14] 张国勇, 马 军, 甘正宁, 陈 勇. 非均匀可激介质中的螺旋波. 物理学报, 2008, 57(11): 6815-6823. doi: 10.7498/aps.57.6815
    [15] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为. 物理学报, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [16] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图. 物理学报, 2007, 56(6): 3332-3336. doi: 10.7498/aps.56.3332
    [17] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波. 物理学报, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
    [18] 范伟丽, 董丽芳, 李雪辰, 尹增谦, 贺亚峰, 刘书华. Air/Ar介质阻挡放电中正方形斑图的特性研究. 物理学报, 2007, 56(3): 1467-1470. doi: 10.7498/aps.56.1467
    [19] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, 2006, 55(1): 362-366. doi: 10.7498/aps.55.362
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  3426
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-10
  • 修回日期:  2015-09-01
  • 刊出日期:  2015-12-05

介质阻挡放电中同心圆环斑图的产生机理

  • 1. 河北大学物理科学与技术学院, 保定 071002;
  • 2. 滨州学院航空工程学院, 滨州 256603
  • 通信作者: 董丽芳, donglfhbu@163.com
    基金项目: 国家自然科学基金(批准号: 11175054, 11375051)、河北省应用基础研究计划重点基础研究项目(批准号: 15961105D)、河北省教育厅项目(批准号: LJRC011)和山东省自然科学基金(批准号: ZR2014AQ023)资助的课题.

摘要: 在氩气空气混合气体介质阻挡放电中, 得到了同心圆环斑图. 采用高速照相机拍摄了同心圆环斑图在外加电压半周期时间尺度内的放电照片, 发现放电丝是构成同心圆环斑图的基本单元. 通过对比高速照相机拍摄的连续三个正半周期和负半周期的六张放电图像, 证实肉眼看到的同心圆环斑图是由不同半周期放电位置和不同的大量放电丝长时间积累叠加产生的. 随着外加电压升高, 同心圆环斑图会演化成螺旋波, 然后重新转变成同心圆环斑图. 通过对两种斑图的形成和转化特点进行分析, 推断该螺旋波应具有和同心圆环斑图相似的动力学机理. 计算了两种斑图的放电功率, 发现功率随外加电压增加近似满足线性增长的关系. 利用相关计算的方法计算并对比了不同延迟时间下两种斑图的互相关系数, 结果表明, 同心圆环斑图的互相关系数相对较低且无明显规律, 螺旋波的互相关系数稍高且具有随延迟时间增大呈现振荡的特点.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回