搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响

于涛 刘毅 朱正勇 钟汇才 朱开贵 苟成玲

引用本文:
Citation:

Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响

于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲

Influence of Mo capping layer on magnetic anisotropy of MgO/CoFeB/Mo

Yu Tao, Liu Yi, Zhu Zheng-Yong, Zhong Hui-Cai, Zhu Kai-Gui, Gou Cheng-Ling
PDF
导出引用
  • 研究了Mo覆盖层厚度对MgO/CoFeB结构磁各向异性的影响. 研究发现, 加平行磁场生长出来的MgO/CoFeB/Mo样品表现为面内各向异性, 并且随着CoFeB的厚度减小, 面内各向异性逐渐减弱; 在CoFeB厚度减小到1.1 nm时, 仍可以保持面内各向异性, 垂直方向的外加饱和场逐渐减少; 厚度在0.9 nm及以下的情况下, 面内各向异性消失. 改变Mo覆盖层厚度, 当tMo= 1.6 nm时, 垂直方向的饱和场最小. 当生长过程的磁场变为垂直磁场时, 不同厚度的Mo覆盖层对MgO/CoFeB 的磁各向异性影响不同. Mo厚度在1 nm及以下时MgO/CoFeB/Mo样品表现为面内各向异性, Mo覆盖层厚度在1.2和5 nm之间时样品出现了垂直磁各向异性; 并且垂直方向的矫顽力也发生了变化, Mo覆盖层厚度为1.4 nm时样品的磁滞损耗会大一些.
    In this paper, the influence of Mo capping layer on magnetic anisotropy of MgO/CoFeB/Mo with varying thickness is studied. It is found that Mo capping layer shows more saturated magnetic moments than Ta capping layer. The direction of the external magnetic field has a great influence on the magnetic anisotropy. The MgO/CoFeB/Mo sample prepared in an applied magnetic field parallel to the plane shows in-plane magnetic anisotropy (IMA). IMA becomes weak as the CoFeB thickness decreases, and it still exists when the thickness decreases to 1.1 nm. At the same time, the saturation field vertical to the plane decreases. When the thickness of CoFeB layer decreases to 0.9 nm or less, the IMA disappears. In our study, the saturated magnetization and magnetic dead layer are 1600 emu/cm3 and 0.26 nm at the annealing temperature 200 ℃, and the interface anisotropy is 0.91 erg/cm2, which is smaller than previous research results. Increasing the annealing temperature helps the sample keep the saturated state under a small magnetic field vertical to the plane, and makes IMA weak and transform into PMA. The variation of the Mo capping layer thickness affects the saturation magnetic moment of the sample. The magnetic moment shows a sharp downtrend when the Mo layer is between 1.2 and 1.6 nm, then it turns stabler with Mo capping layer thickening. Meanwhile, when the Mo capping layer is 1.6 nm, the external vertical saturation field becomes smallest. However under the parallel magnetic field, changing the thickness or annealing temperature, or changing both leads to no PMA occurring. When the magnetic field direction changes from parallel to vertical direction, some of the samples show PMA after the annealing process. The magnetic anisotropy of MgO/CoFeB/Mo varies with the thickness of Mo capping layer. IMA is present when the Mo capping layer is 1 nm or less while PMA is present when the Mo capping layer is between 1.2 and 5 nm. The sample coercive force in the vertical direction varies with thickness, and its magnetic hysteresis loss is much larger when the thickness of Mo capping layer is 1.4 nm.
      通信作者: 苟成玲, gouchengling@buaa.edu.cn
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2011CB921804)资助的课题.
      Corresponding author: Gou Cheng-Ling, gouchengling@buaa.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB921804).
    [1]

    Zhu J G, Park C doi:10.1016/S1369-7021(06)71693-52006 Mater. Today 9 36

    [2]

    Kishi T, Yoda H, Kai T, et al. 2008 IEDM Tech. Dig. 309 1

    [3]

    Chen Y, Wang X, Li H, Xi H, Yan Y, Zhu W 2010 IEEE Trans. Very Large Scale Integr. Syst. 18 1724

    [4]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [5]

    Park J H, Park C, Jeong T, Moneck M T, Nufer N T, Zhu J G 2008 J. Appl. Phys. 103 07A917

    [6]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210

    [7]

    Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502

    [8]

    Liu T, Cai J W, Sun L 2012 Aip. Adv. 2 032151

    [9]

    Sbiaa R, Meng H, Piramanayagam S N 2011 Phys. Status Solidi RRL 5 413

    [10]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [11]

    Yakushiyi K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Ando K 2010 Appl. Phys. Lett. 97 232508

    [12]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

    [13]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [14]

    Yang H X, Chshiev M, Dieny B, Lee J H, Manchon A, Shin K H 2011 Phys. Rev. B 84 054401

    [15]

    Shimabukuro R, Nakamura K, Akiyama T, Ito T 2010 Physica E 42 1014

    [16]

    Jung J H, Lim S H, Lee S R 2010 J. Appl. Phys. 108 113902

    [17]

    Bonell F, Murakami S, Shiota Y, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Lett. 98 232510

    [18]

    Cheng C W, Feng W, Chern G, Lee C M, Wu T H 2011 J. Appl. Phys. 110 033916

    [19]

    Lee D S, Chang H T, Cheng C W, Chern G 2014 Sci. Rep. 4 5895

    [20]

    Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Rep. 45895

    [21]

    Oh Y W, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724

    [22]

    Ibusuki T, Miyajima T, Umehara S, Eguchi S, Sato M 2009 Appl. Phys. Lett. 94 062509

    [23]

    Miyajima T, Ibusuki T, Umehara S, Sato M, Eguchi S, Tsukada M, Kataoka Y 2009 Appl. Phys. Lett. 94 122501

    [24]

    An G G, Lee J B, Yang S M, Kim J H, Chung W S, Hong J P 2015 Acta Mater. 87 259

    [25]

    Niessen A K, De Boer F R 1981 J. Less-Common Met. 82 75

    [26]

    Chikazumi S 1950 J. Phys. Soc. Jpn. 5 327

  • [1]

    Zhu J G, Park C doi:10.1016/S1369-7021(06)71693-52006 Mater. Today 9 36

    [2]

    Kishi T, Yoda H, Kai T, et al. 2008 IEDM Tech. Dig. 309 1

    [3]

    Chen Y, Wang X, Li H, Xi H, Yan Y, Zhu W 2010 IEEE Trans. Very Large Scale Integr. Syst. 18 1724

    [4]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [5]

    Park J H, Park C, Jeong T, Moneck M T, Nufer N T, Zhu J G 2008 J. Appl. Phys. 103 07A917

    [6]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210

    [7]

    Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502

    [8]

    Liu T, Cai J W, Sun L 2012 Aip. Adv. 2 032151

    [9]

    Sbiaa R, Meng H, Piramanayagam S N 2011 Phys. Status Solidi RRL 5 413

    [10]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [11]

    Yakushiyi K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Ando K 2010 Appl. Phys. Lett. 97 232508

    [12]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

    [13]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [14]

    Yang H X, Chshiev M, Dieny B, Lee J H, Manchon A, Shin K H 2011 Phys. Rev. B 84 054401

    [15]

    Shimabukuro R, Nakamura K, Akiyama T, Ito T 2010 Physica E 42 1014

    [16]

    Jung J H, Lim S H, Lee S R 2010 J. Appl. Phys. 108 113902

    [17]

    Bonell F, Murakami S, Shiota Y, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Lett. 98 232510

    [18]

    Cheng C W, Feng W, Chern G, Lee C M, Wu T H 2011 J. Appl. Phys. 110 033916

    [19]

    Lee D S, Chang H T, Cheng C W, Chern G 2014 Sci. Rep. 4 5895

    [20]

    Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Rep. 45895

    [21]

    Oh Y W, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724

    [22]

    Ibusuki T, Miyajima T, Umehara S, Eguchi S, Sato M 2009 Appl. Phys. Lett. 94 062509

    [23]

    Miyajima T, Ibusuki T, Umehara S, Sato M, Eguchi S, Tsukada M, Kataoka Y 2009 Appl. Phys. Lett. 94 122501

    [24]

    An G G, Lee J B, Yang S M, Kim J H, Chung W S, Hong J P 2015 Acta Mater. 87 259

    [25]

    Niessen A K, De Boer F R 1981 J. Less-Common Met. 82 75

    [26]

    Chikazumi S 1950 J. Phys. Soc. Jpn. 5 327

  • [1] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运. 物理学报, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [2] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [3] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [4] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究. 物理学报, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [5] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [6] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [7] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [8] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究. 物理学报, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [9] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [10] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [11] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [12] 冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华. 利用FePt/Au多层膜结构制备垂直磁记录L10-FePt薄膜. 物理学报, 2009, 58(5): 3503-3508. doi: 10.7498/aps.58.3503
    [13] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响. 物理学报, 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [14] 郑秋容, 付云起, 林宝勤, 袁乃昌. 介质覆盖对高阻表面带隙的影响. 物理学报, 2006, 55(9): 4698-4703. doi: 10.7498/aps.55.4698
    [15] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [16] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系. 物理学报, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [17] 关鹏, 刘宜华. 磁感生各向异性的一个新模型. 物理学报, 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [18] 李义兵, 李少平. 各向异性磁介质中的静磁交换模. 物理学报, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [19] 曾训一, 陆晓佳, 王亚旗. YIG中生长感生磁各向异性的来源. 物理学报, 1989, 38(11): 1891-1895. doi: 10.7498/aps.38.1891
    [20] 向仁生. 关於铬矾单晶的顺磁各向异性. 物理学报, 1957, 13(3): 177-180. doi: 10.7498/aps.13.177
计量
  • 文章访问数:  2778
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-15
  • 修回日期:  2015-09-09
  • 刊出日期:  2015-12-05

Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响

  • 1. 北京航空航天大学物理科学与核能工程学院, 北京 100191;
  • 2. 中国科学院微电子研究所, 北京 100029
  • 通信作者: 苟成玲, gouchengling@buaa.edu.cn
    基金项目: 国家重点基础研究发展计划 (批准号: 2011CB921804)资助的课题.

摘要: 研究了Mo覆盖层厚度对MgO/CoFeB结构磁各向异性的影响. 研究发现, 加平行磁场生长出来的MgO/CoFeB/Mo样品表现为面内各向异性, 并且随着CoFeB的厚度减小, 面内各向异性逐渐减弱; 在CoFeB厚度减小到1.1 nm时, 仍可以保持面内各向异性, 垂直方向的外加饱和场逐渐减少; 厚度在0.9 nm及以下的情况下, 面内各向异性消失. 改变Mo覆盖层厚度, 当tMo= 1.6 nm时, 垂直方向的饱和场最小. 当生长过程的磁场变为垂直磁场时, 不同厚度的Mo覆盖层对MgO/CoFeB 的磁各向异性影响不同. Mo厚度在1 nm及以下时MgO/CoFeB/Mo样品表现为面内各向异性, Mo覆盖层厚度在1.2和5 nm之间时样品出现了垂直磁各向异性; 并且垂直方向的矫顽力也发生了变化, Mo覆盖层厚度为1.4 nm时样品的磁滞损耗会大一些.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回