搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时反镜能量检测法的循环移位扩频水声通信

杜鹏宇 殷敬伟 周焕玲 郭龙祥

引用本文:
Citation:

基于时反镜能量检测法的循环移位扩频水声通信

杜鹏宇, 殷敬伟, 周焕玲, 郭龙祥

Cyclic shift keying spread spectrum underwater acoustic communication using time reversal energy detector

Du Peng-Yu, Yin Jing-Wei, Zhou Huan-Ling, Guo Long-Xiang
PDF
导出引用
  • 海面的起伏和多普勒效应使得接收信号的载波相位发生跳变以及水声信道的多途扩展使得接收信号波形发生畸变, 这严重影响循环移位扩频系统的性能. 本文提出循环移位能量检测器算法, 通过检测循环移位匹配滤波器的输出能量对系统进行解码, 可有效解决载波相位跳变对循环移位扩频系统的影响; 将时间反转镜技术与循环移位能量检测器相结合, 进一步提出时反镜能量检测器算法, 利用已检测到的符号对信道进行实时估计并进行时反处理, 抑制了水声信道多途扩展的影响, 保证了循环移位扩频系统可在低信噪比条件下工作. 通过大连海上试验以及莲花湖湖上试验验证, 在复杂水声信道多途扩展、载波相位跳变和低信噪比条件下实现了低误码水声通信.
    The fluctuation of sea surface and the Doppler effect cause carrier phase fluctuations of received signal, and the multipath expansion of the underwater acoustic channel makes received signal distorted, which can seriously influence the decoding performance of the cyclic shift spread spectrum system. In this paper, we propose cyclic shift energy detector (CS-ED) algorithm for cyclic shift keying spread spectrum system, which can solve the problem about the influence of carrier phase fluctuation by detecting the output energy of cyclic shift matched filter. The CS-ED combined with time reversal mirror is further proposed and analyzed in this paper by using a time-updated channel impulse-response estimate as a (match) filter to do time reversal processing to mitigate the multipath-induced interferences. Time reversal CS-ED method is simple and robust, which can make the system work in low SNR. Dalian Sea test validation and Lianhua lake test validation are carried on, showing that the low bit error rate underwater acoustic communication is achieved under the condition of multi-path extension, carrier phase fluctuation and low signal-to-noise ratio.
      通信作者: 殷敬伟, yinjingwei@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51179034, 61471137) 和船舶预研支撑技术基金(批准号: 13J3.1.5)资助的课题.
      Corresponding author: Yin Jing-Wei, yinjingwei@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51179034, 61471137) and the Ship Pre-research and Support Technology Foundation, China (Grant No. 13J3.1.5).
    [1]

    He J, Huang M G, Li X X, Li H Q, Zhao L, Zhao J D, Li Y, Zhao S L 2015 Chin. Phys. B 24 104102

    [2]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [3]

    Kilfoyle D B, Baggeroer A B 2000 IEEE J. Ocean Eng. 25 4

    [4]

    Dogandzic A, Nehorai A 2002 IEEE Trans. Signal Proces. 50 457

    [5]

    LeBlanc L R, Beaujean P P J 2000 IEEE J. Ocean Eng. 25 40

    [6]

    Ye P C, Pan G 2015 Chin. Phys. B 24 066401

    [7]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]

    [8]

    Yu Y, Zhou F, Qiao G 2013 Acta Phys. Sin. 62 064302 (in Chinese) [于洋, 周锋, 乔钢 2013 物理学报 62 064302]

    [9]

    Yu Y, Zhou F, Qiao G 2012 Acta Phys. Sin. 61 234301 (in Chinese) [于洋, 周锋, 乔钢 2012 物理学报 61 234301]

    [10]

    Freitag L, Stojanovic M 2004 OCEANS'04 Kobe, Japan, November 9-12, 2004 p14

    [11]

    Stojanovic M, Freitag L 2000 OCEANS 2000 MTS/IEEE Conference and Exhibition Providence, USA, September 11-14, 2000 p123

    [12]

    Kuperman W A, Hodgkiss W S, Song H C, Akal T, Ferla C, Jackson D R 1998 J. Acoust. Soc. Am. 103 25

    [13]

    Song H C, Kuperman W A, Hodgkiss W S 1998 J. Acoust. Soc. Am. 103 3234

    [14]

    Hodgkiss W S, Song H C, Kuperman W A, Akal T, Ferla C, Jackson D R 1999 J. Acoust. Soc. Am. 105 1597

    [15]

    Yin J W, Hui J, Hui J Y, Sheng X L, Yao Z X 2007 Acta Acoust. 32 362 (in Chinese) [殷敬伟, 惠娟, 惠俊英, 生雪莉, 姚直象 2007 声学学报 32 362]

    [16]

    Yin J W, Hui J Y, Wang Y, Liu Y 2007 J. Syst. Simul. 19 4033 (in Chinese) [殷敬伟, 惠俊英, 王燕, 刘洋 2007系统仿真学报 19 4033]

    [17]

    Yin J W 2011 Principle of Acoustic Communication and Signal Processing (Beijing: National Defense Industry Press) p20 (in Chinese) [殷敬伟 2011 水声通信原理及信号处理技术 (北京: 国防工业出版社) 第20页]

    [18]

    Yang T C 2004 IEEE J. Ocean Eng. 29 472

    [19]

    Yang T C 2003 IEEE J. Ocean Eng. 28 229

  • [1]

    He J, Huang M G, Li X X, Li H Q, Zhao L, Zhao J D, Li Y, Zhao S L 2015 Chin. Phys. B 24 104102

    [2]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [3]

    Kilfoyle D B, Baggeroer A B 2000 IEEE J. Ocean Eng. 25 4

    [4]

    Dogandzic A, Nehorai A 2002 IEEE Trans. Signal Proces. 50 457

    [5]

    LeBlanc L R, Beaujean P P J 2000 IEEE J. Ocean Eng. 25 40

    [6]

    Ye P C, Pan G 2015 Chin. Phys. B 24 066401

    [7]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]

    [8]

    Yu Y, Zhou F, Qiao G 2013 Acta Phys. Sin. 62 064302 (in Chinese) [于洋, 周锋, 乔钢 2013 物理学报 62 064302]

    [9]

    Yu Y, Zhou F, Qiao G 2012 Acta Phys. Sin. 61 234301 (in Chinese) [于洋, 周锋, 乔钢 2012 物理学报 61 234301]

    [10]

    Freitag L, Stojanovic M 2004 OCEANS'04 Kobe, Japan, November 9-12, 2004 p14

    [11]

    Stojanovic M, Freitag L 2000 OCEANS 2000 MTS/IEEE Conference and Exhibition Providence, USA, September 11-14, 2000 p123

    [12]

    Kuperman W A, Hodgkiss W S, Song H C, Akal T, Ferla C, Jackson D R 1998 J. Acoust. Soc. Am. 103 25

    [13]

    Song H C, Kuperman W A, Hodgkiss W S 1998 J. Acoust. Soc. Am. 103 3234

    [14]

    Hodgkiss W S, Song H C, Kuperman W A, Akal T, Ferla C, Jackson D R 1999 J. Acoust. Soc. Am. 105 1597

    [15]

    Yin J W, Hui J, Hui J Y, Sheng X L, Yao Z X 2007 Acta Acoust. 32 362 (in Chinese) [殷敬伟, 惠娟, 惠俊英, 生雪莉, 姚直象 2007 声学学报 32 362]

    [16]

    Yin J W, Hui J Y, Wang Y, Liu Y 2007 J. Syst. Simul. 19 4033 (in Chinese) [殷敬伟, 惠俊英, 王燕, 刘洋 2007系统仿真学报 19 4033]

    [17]

    Yin J W 2011 Principle of Acoustic Communication and Signal Processing (Beijing: National Defense Industry Press) p20 (in Chinese) [殷敬伟 2011 水声通信原理及信号处理技术 (北京: 国防工业出版社) 第20页]

    [18]

    Yang T C 2004 IEEE J. Ocean Eng. 29 472

    [19]

    Yang T C 2003 IEEE J. Ocean Eng. 28 229

计量
  • 文章访问数:  1909
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-29
  • 修回日期:  2015-08-28
  • 刊出日期:  2016-01-05

基于时反镜能量检测法的循环移位扩频水声通信

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001;
  • 2. 哈尔滨工程大学水声工程学院, 哈尔滨 150001
  • 通信作者: 殷敬伟, yinjingwei@hrbeu.edu.cn
    基金项目: 

    国家自然科学基金 (批准号: 51179034, 61471137) 和船舶预研支撑技术基金(批准号: 13J3.1.5)资助的课题.

摘要: 海面的起伏和多普勒效应使得接收信号的载波相位发生跳变以及水声信道的多途扩展使得接收信号波形发生畸变, 这严重影响循环移位扩频系统的性能. 本文提出循环移位能量检测器算法, 通过检测循环移位匹配滤波器的输出能量对系统进行解码, 可有效解决载波相位跳变对循环移位扩频系统的影响; 将时间反转镜技术与循环移位能量检测器相结合, 进一步提出时反镜能量检测器算法, 利用已检测到的符号对信道进行实时估计并进行时反处理, 抑制了水声信道多途扩展的影响, 保证了循环移位扩频系统可在低信噪比条件下工作. 通过大连海上试验以及莲花湖湖上试验验证, 在复杂水声信道多途扩展、载波相位跳变和低信噪比条件下实现了低误码水声通信.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回