搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H,He对Ti3SiC2材料力学性能影响的第一性原理研究

姚宝殿 胡桂青 于治水 张慧芬 施立群 沈皓 王月霞

引用本文:
Citation:

H,He对Ti3SiC2材料力学性能影响的第一性原理研究

姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞

Effect of H and He on the mechanical properties of Ti3SiC2: the first-principles calculation

Yao Bao-Dian, Hu Gui-Qing, Yu Zhi-Shui, Zhang Hui-Fen, Shi Li-Qun, Shen Hao, Wang Yue-Xia
PDF
导出引用
  • 层状三元化合物Ti3SiC2兼具陶瓷与金属的优良性能而得到诸多研究领域的关注. 本工作采用第一性原理密度泛函理论研究了氢、氦对该材料解理断裂行为的影响, 以期探讨Ti3SiC2作为核应用材料的可行性. 结果表明Si-Ti相对较弱的化学键使之相应的原子层间成为解理断裂面. 氢与氦都易在此原子层间聚集. 氦的聚集严重降低材料的解理断裂临界应力促使材料的断裂, 而氢则对该临界应力影响不大. 两者的差异源于这两类原子与材料中晶体原子相异的电子杂化行为.
    Layered MAX phase ternary compounds (M = early transition metals, A = group A elements, and X = C or N) show promise of wide applications in many applied fields because these compounds have combined ceramic and metallic properties. As an exemple of the MAX phase family, Ti3SiC2 exhibits a high melting temperature, high electrical and thermal conductivities, and an excellent resistance to oxidation and thermal shock. Particularly, it possesses unusual mechanical properties, such as easy machinability, high Young's modulus, thus it is considered as a candidate in advanced nuclear reactors.In this work, we investigate the effect of hydrogen and helium on the cleavage fracture of Ti3SiC2 in order to evaluate the reliability of Ti3SiC2 used in nuclear industry. We have performed first-principles mechanical calculations by using the density functional theory as implemented in the Cambridge Serial Total Energy Package code. Uniaxial tensile simulations along c-axis have been done to calculate the stress-strain curve and the cleavage energy for each interlayer of Ti3SiC2. It is found that Ti3SiC2 has the cleavage characteristics, and the habit cleavage plane starts from Si-Ti interlayer because of relatively weak Si-Ti bond. Hydrogen and helium always accumulate in the Si layer. Helium decreases largely the critical stress of cleavage fracture of Ti3SiC2. In contrast, hydrogen does not efficiently affect the cleavage fracture in Ti3SiC2. The difference between helium and hydrogen behaviors in Ti3SiC2 originates primarily from the difference of electronic hybridization with lattice atoms of Ti3SiC2. For helium, the neighboring Si atoms will be ejected by helium atoms, and the Si-Ti bonds will be broken, thus resulting in the cleavage fracture. However, for hydrogen, it is primarily hybridized with the s states of neighboring Si atoms, which does not severely disturb the p-d hybridization between Si and Ti atoms. Thus, the cleavage fracture from Si-Ti interlayer is hardly aggravated in the presence of hydrogen. Fortunately, Ti3SiC2 has a self-repair ability at high temperatures. It will desorb helium atoms at high helium pressure through Si layers. This behavior will alleviate the cleavage fracture induced by helium. In summary, Ti3SiC2 may be a potential material applied in light water or other fission reactors in the future.
      通信作者: 王月霞, yxwang@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11475046, 11175047) 资助的课题.
      Corresponding author: Wang Yue-Xia, yxwang@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475046, 11175047).
    [1]

    Jeitschko W, Nowotny H 1967 Monatasch. Chem. 98 329

    [2]

    Barsoum M W, El-Raghy T 1996 J. Am. Ceram. Soc. 79 1953

    [3]

    Medvedeva N I, Freeman A J 2008 Scripta Mater. 58 671

    [4]

    Chaput L, Hug G, Pecheur P, Scherrer H 2007 Phys. Rev. B 75 035107

    [5]

    Joulain A, Thilly L, Rabier J 2008 Phil. Mag. 88 1307

    [6]

    Zhang Z F, Sun Z M, Hashimoto H 2003 Mater. Lett. 57 1295

    [7]

    Zhou Y C, Sun Z M 2000 J. Phys. : Condens. Mater. 12 L457

    [8]

    Li Shi-Bo, Xie Jian-Xin, et al. 2004 Mater. Sci. Eng. A 381 51

    [9]

    Gulbinski W, Gilewicz A, Suszko T, Warcholinski B, Kuklinski Z 2004 Surf. Coat. Tech. 180 341

    [10]

    Song P, Sun J R, Wang Z G, Cui M H, Shen T L, Li Y F, Pang L L, Zhu Y B, Huang Q, Lu J J 2014 Nucl. Instr. Meth. B 326 332

    [11]

    Yang T F, Wang C X, Taylor C A, Huang X J, Huang Q, Li F Z, Shen L, Zhou X B, Xue J M, Yan S, Wang Y G 2014 Acta Mater. 65 351

    [12]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Appl. Phys. 115 023503

    [13]

    Du Y Y, Li B S, Wang Z G, Sun J R, Yao C F, Chang H L, Pang L L, Zhu Y B, Cui M H, Zhang H P, Li Y F, Wang J, Zhu H P, Song P, Wang D 2014 Acta Phys. Sin. 63 216101 (in Chinese) [杜洋洋, 李炳生, 王志光, 孙建荣, 姚存峰, 常海龙, 庞立龙, 朱亚滨, 崔明焕, 张宏鹏, 李远飞, 王霁, 朱卉平, 宋鹏, 王栋 2014 物理学报 63 216101]

    [14]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 物理学报 63 106102]

    [15]

    Wang F, Liu W, Deng A H, Zhu J J, An Z, Wang Y 2013 Acta Phys. Sin. 62 186801 (in Chinese) [王飞, 刘望, 邓爱红, 朱敬军, 安竹, 汪渊 2013 物理学报 62 186801]

    [16]

    Zhou Y, Sun Z, Wang X, Chen S 2011 J. Phys. : Condens. Mater. 13 10001

    [17]

    Jia L X, Wang Y X, Ou X D, Shi L Q, Ding W 2012 Mater. Lett. 83 23

    [18]

    Tateyama Y, Ohno T 2003 Phys. Rev. B 67 174105

    [19]

    Takahashi K, Isobe S, Ohnuki S 2013 Appl. Phys. Lett. 102 113108

    [20]

    Ou X D, Wang Y X, Shi L Q, Ding W, Wang M, Zhu Y S 2011 Phys. B 406 4460

    [21]

    Radovic M, Barsoum M W, El-Raghy T, Seidensticker J, Wiederhorn S 2000 Acta Mater. 48 453

    [22]

    Zhang H F, Yao B D, Shi L Q, O'Connor D J, Huang J, Zhang J Y, Ding W, Wang Y X 2015 Acta Mater. 97 50

  • [1]

    Jeitschko W, Nowotny H 1967 Monatasch. Chem. 98 329

    [2]

    Barsoum M W, El-Raghy T 1996 J. Am. Ceram. Soc. 79 1953

    [3]

    Medvedeva N I, Freeman A J 2008 Scripta Mater. 58 671

    [4]

    Chaput L, Hug G, Pecheur P, Scherrer H 2007 Phys. Rev. B 75 035107

    [5]

    Joulain A, Thilly L, Rabier J 2008 Phil. Mag. 88 1307

    [6]

    Zhang Z F, Sun Z M, Hashimoto H 2003 Mater. Lett. 57 1295

    [7]

    Zhou Y C, Sun Z M 2000 J. Phys. : Condens. Mater. 12 L457

    [8]

    Li Shi-Bo, Xie Jian-Xin, et al. 2004 Mater. Sci. Eng. A 381 51

    [9]

    Gulbinski W, Gilewicz A, Suszko T, Warcholinski B, Kuklinski Z 2004 Surf. Coat. Tech. 180 341

    [10]

    Song P, Sun J R, Wang Z G, Cui M H, Shen T L, Li Y F, Pang L L, Zhu Y B, Huang Q, Lu J J 2014 Nucl. Instr. Meth. B 326 332

    [11]

    Yang T F, Wang C X, Taylor C A, Huang X J, Huang Q, Li F Z, Shen L, Zhou X B, Xue J M, Yan S, Wang Y G 2014 Acta Mater. 65 351

    [12]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Appl. Phys. 115 023503

    [13]

    Du Y Y, Li B S, Wang Z G, Sun J R, Yao C F, Chang H L, Pang L L, Zhu Y B, Cui M H, Zhang H P, Li Y F, Wang J, Zhu H P, Song P, Wang D 2014 Acta Phys. Sin. 63 216101 (in Chinese) [杜洋洋, 李炳生, 王志光, 孙建荣, 姚存峰, 常海龙, 庞立龙, 朱亚滨, 崔明焕, 张宏鹏, 李远飞, 王霁, 朱卉平, 宋鹏, 王栋 2014 物理学报 63 216101]

    [14]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 物理学报 63 106102]

    [15]

    Wang F, Liu W, Deng A H, Zhu J J, An Z, Wang Y 2013 Acta Phys. Sin. 62 186801 (in Chinese) [王飞, 刘望, 邓爱红, 朱敬军, 安竹, 汪渊 2013 物理学报 62 186801]

    [16]

    Zhou Y, Sun Z, Wang X, Chen S 2011 J. Phys. : Condens. Mater. 13 10001

    [17]

    Jia L X, Wang Y X, Ou X D, Shi L Q, Ding W 2012 Mater. Lett. 83 23

    [18]

    Tateyama Y, Ohno T 2003 Phys. Rev. B 67 174105

    [19]

    Takahashi K, Isobe S, Ohnuki S 2013 Appl. Phys. Lett. 102 113108

    [20]

    Ou X D, Wang Y X, Shi L Q, Ding W, Wang M, Zhu Y S 2011 Phys. B 406 4460

    [21]

    Radovic M, Barsoum M W, El-Raghy T, Seidensticker J, Wiederhorn S 2000 Acta Mater. 48 453

    [22]

    Zhang H F, Yao B D, Shi L Q, O'Connor D J, Huang J, Zhang J Y, Ding W, Wang Y X 2015 Acta Mater. 97 50

  • [1] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [2] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [3] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [4] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [5] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究. 物理学报, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [6] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [7] 朱勇, 李宝华, 谢国锋. 质子对BaTiO3薄膜辐照损伤的计算机模拟. 物理学报, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [8] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [9] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [10] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [11] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [12] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [13] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究. 物理学报, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [14] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [16] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [17] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [18] 羌建兵, 于志伟, 黄火根, 姜 楠, 董 闯. Ti-Zr-Ni单相准晶合金的室温力学性能研究. 物理学报, 2005, 54(4): 1909-1913. doi: 10.7498/aps.54.1909
    [19] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
    [20] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
计量
  • 文章访问数:  3426
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-27
  • 修回日期:  2015-10-15
  • 刊出日期:  2016-01-20

H,He对Ti3SiC2材料力学性能影响的第一性原理研究

  • 1. 上海工程技术大学材料工程学院, 上海 201620;
  • 2. 复旦大学现代物理研究所, 上海 200433
  • 通信作者: 王月霞, yxwang@fudan.edu.cn
    基金项目: 国家自然科学基金(批准号: 11475046, 11175047) 资助的课题.

摘要: 层状三元化合物Ti3SiC2兼具陶瓷与金属的优良性能而得到诸多研究领域的关注. 本工作采用第一性原理密度泛函理论研究了氢、氦对该材料解理断裂行为的影响, 以期探讨Ti3SiC2作为核应用材料的可行性. 结果表明Si-Ti相对较弱的化学键使之相应的原子层间成为解理断裂面. 氢与氦都易在此原子层间聚集. 氦的聚集严重降低材料的解理断裂临界应力促使材料的断裂, 而氢则对该临界应力影响不大. 两者的差异源于这两类原子与材料中晶体原子相异的电子杂化行为.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回