搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔化状态下金属样品表面的微喷射问题

陈永涛 洪仁楷 陈浩玉 任国武

引用本文:
Citation:

熔化状态下金属样品表面的微喷射问题

陈永涛, 洪仁楷, 陈浩玉, 任国武

Experimental investigation of ejecta on melted Sn sample under shock loading

Chen Yong-Tao, Hong Ren-Kai, Chen Hao-Yu, Ren Guo-Wu
PDF
导出引用
  • 熔化状态下金属样品表面微喷物质的时空演化规律是目前国内外研究关注的热点问题, 不过, 由于压电石英计等传统诊断技术能力的限制, 导致目前对该问题的认识仍存在明显不足. 本文采用作者前期发展的大量程Asay-F窗技术, 结合传统压电石英计, 通过将其布置在距受载Sn样品自由面不同高度位置处的方法, 系统研究了熔化Sn样品表面微喷物质的运动演化规律, 给出了特定时刻微喷物质的密度-空间分布图像. 本文研究结果从实验上确认了微喷物质时空演化过程中的自相似膨胀规律, 成功避免了传统压电石英计由于测量量程偏低导致其获取物理认识不够全面的问题, 为认识动载下金属材料的微喷运动演化规律提供了重要实验支撑.
    Ejecta production from the metal surface under shock-loading is currently a focused issue both at home and abroad. However, the traditional experimental techniques, such as piezoelectric pin, only diagnose the ejected data for low-density ejecta but not for high-density ones, giving a poor understanding of this process. Particularly, when ejecta production increases significantly as the loaded metal melts on release or shock, the measurement carried out by the traditional piezoelectric pin becomes worse, and brings further missing knowledge in the ejecta evolution.In this paper, an Asay-F window designed earlier by the authors based on the traditional Asay-window, is employed to investigate the formation process of the ejecta from the melted Sn metal. As indicated by previous experimental findings on shocked Pb sample, the Asay-F window is a reliable and effective tool for measuring the high-density ejecta by comparing the result with those of the piezoelectric pin. The interface velocity within the Asay-F window measured by Doppler pin system, is obtained. On the basis of momentum conservation condition, the physical quantities of ejecta, such as accumulative areal mass, volume density and velocity, are derived from the interface velocity. By analyzing the experimental data diagnosed by the Asay-F window, which is placed at different offsets from the free surface of Sn sample, the expansion evolution of the ejecta is obtained. Through transforming the dynamic volume density to the static one, the picture of the ejecta density distribution changes with the spatial distance at a specific moment, which is explicitly displayed. It is found that the ejecta density distributions gained from the different offsets at the uniform moment are consistent. As a consequence, the self-similar expansion evolution of the ejecta is experimentally confirmed, which successfully avoids the unclear understanding of this process if only examined by the piezoelectric pin. This experiment may lay the foundation of the formation of the ejecta production for the metal sample subjected to high pressure loading.
      通信作者: 任国武, gwren@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11472254, 11272006)、国防科技重点实验室基金(批准号: 9140C670301130C67238)和中物院发展基金(批准号: 2013A0201009)资助的课题.
      Corresponding author: Ren Guo-Wu, gwren@fudan.edu.cn
    • Funds: Projected supported by the National Natural Science Foundation of China (Grant Nos. 11472254, 11272006), the Science Foundation of Laboratory for Shock wave and Detonation Physics Research (Grant No. 9140C670301130C67238), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2013A0201009).
    [1]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [2]

    Asay J R 1978 J. Appl. Phys. 49 6173

    [3]

    Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A, Stevens G D, Turley W D, Veeser L R, Buttler W T 2005 J. Appl. Phys. 98 113508

    [4]

    Zeller M B, Vogan M W, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [5]

    Zeller M B, Vogan M W, Gray G T, Huerta D C, King N S P, Neal G E, Valentine S J, Payton J R, Rubin J, Stevens G D, Turley W D, Buttler W T 2008 J. Appl. Phys. 103 083521

    [6]

    Zeller M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [7]

    Buttler W T, Zeller M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R, Iverson A, Young J 2007 J. Appl. Phys. 101 063547

    [8]

    Buttler W T, Hixson R S, King N S P, Olson R T, Rigg P A, Zeller M B, Routley N, Rimmer A 2007 Appl. Phys. Lett. 90 151921

    [9]

    Zeller M B, Buttler W T 2008 Appl. Phys. Lett. 93 114102

    [10]

    Chen Y T, Ren G W, Tang T G, Li Q Z, Wang D T, Hu H B 2012 Acta Phys. Sin. 61 206202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 李庆忠, 王德田, 胡海波 2012 物理学报 61 206202]

    [11]

    Chen Y T, Hu H B, Tang T G, Li Q Z, Wang R B, Wang D T 2012 Scientia Sinica G. 42 1076 (in Chinese) [陈永涛, 胡海波, 汤铁钢, 李庆忠, 王荣波, 王德田 2012 中国科学G 42 1076]

    [12]

    Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 胡海波 2013 物理学报 62 116202]

    [13]

    Shao J L, Wang P, He A M, Duan S Q, Qin C S 2013 J. Appl. Phys. 113 153501

    [14]

    Shao J L, Wang P, He A M 2014 J. Appl. Phys. 116 073501

    [15]

    Ren G W, Chen Y T, Tang T G, Li Q Z 2014 J. Appl. Phys. 116 133507

  • [1]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [2]

    Asay J R 1978 J. Appl. Phys. 49 6173

    [3]

    Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A, Stevens G D, Turley W D, Veeser L R, Buttler W T 2005 J. Appl. Phys. 98 113508

    [4]

    Zeller M B, Vogan M W, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [5]

    Zeller M B, Vogan M W, Gray G T, Huerta D C, King N S P, Neal G E, Valentine S J, Payton J R, Rubin J, Stevens G D, Turley W D, Buttler W T 2008 J. Appl. Phys. 103 083521

    [6]

    Zeller M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [7]

    Buttler W T, Zeller M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R, Iverson A, Young J 2007 J. Appl. Phys. 101 063547

    [8]

    Buttler W T, Hixson R S, King N S P, Olson R T, Rigg P A, Zeller M B, Routley N, Rimmer A 2007 Appl. Phys. Lett. 90 151921

    [9]

    Zeller M B, Buttler W T 2008 Appl. Phys. Lett. 93 114102

    [10]

    Chen Y T, Ren G W, Tang T G, Li Q Z, Wang D T, Hu H B 2012 Acta Phys. Sin. 61 206202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 李庆忠, 王德田, 胡海波 2012 物理学报 61 206202]

    [11]

    Chen Y T, Hu H B, Tang T G, Li Q Z, Wang R B, Wang D T 2012 Scientia Sinica G. 42 1076 (in Chinese) [陈永涛, 胡海波, 汤铁钢, 李庆忠, 王荣波, 王德田 2012 中国科学G 42 1076]

    [12]

    Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 胡海波 2013 物理学报 62 116202]

    [13]

    Shao J L, Wang P, He A M, Duan S Q, Qin C S 2013 J. Appl. Phys. 113 153501

    [14]

    Shao J L, Wang P, He A M 2014 J. Appl. Phys. 116 073501

    [15]

    Ren G W, Chen Y T, Tang T G, Li Q Z 2014 J. Appl. Phys. 116 133507

  • [1] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [2] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [3] 税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋. 激光加载下金属锡材料微喷颗粒与低密度泡沫混合实验研究. 物理学报, 2019, 68(7): 076201. doi: 10.7498/aps.68.20182280
    [4] 黄艳, 孙继忠, 桑超峰, 胡万鹏, 王德真. 边界局域模引起钨偏滤器靶板侵蚀和形貌变化的数值模拟研究. 物理学报, 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [5] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [6] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究. 物理学报, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [7] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究. 物理学报, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [8] 陈永涛, 任国武, 汤铁钢, 胡海波. 爆轰加载下金属样品的熔化破碎现象诊断. 物理学报, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [9] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [10] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [11] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [12] 辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉. 强激光加载下金属材料微喷回收诊断. 物理学报, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [13] 陈永涛, 任国武, 汤铁钢, 李庆忠, 王德田, 胡海波. 熔化前后Pb样品表面微喷射现象研究. 物理学报, 2012, 61(20): 206202. doi: 10.7498/aps.61.206202
    [14] 田惠忱, 刘丽, 文玉华. [110]Au纳米线在加温过程中结构与热稳定性的原子级模拟研究. 物理学报, 2010, 59(3): 1952-1957. doi: 10.7498/aps.59.1952
    [15] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究. 物理学报, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [16] 文玉华, 孙世刚, 张杨, 朱梓忠. 铂纳米晶在升温过程中结构演化与熔化特征的原子级模拟研究. 物理学报, 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [17] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [18] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响. 物理学报, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 陈刚, 朱震刚. Zn-Al二元合金熔化过程的低频内耗研究. 物理学报, 2002, 51(3): 625-628. doi: 10.7498/aps.51.625
计量
  • 文章访问数:  5979
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-08-27
  • 刊出日期:  2016-01-20

/

返回文章
返回