搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeS分子基态和低激发态的势能曲线与光谱性质

黄多辉 万明杰 王藩侯 杨俊升 曹启龙 王金花

引用本文:
Citation:

GeS分子基态和低激发态的势能曲线与光谱性质

黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花

Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states

Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua
PDF
导出引用
  • 本文以aug-cc-pv5Z为基组, 采用考虑Davidson修正的多参考组态相互作用方法(MRCI+Q)得到了GeS分子基态(X1+)和5个低激发态(11, 11, A1, 15+, 25+)的势能曲线. 计算结果表明: 25+态为排斥态, 其余5个态为束缚态; 6个态有着共同的离解通道, 离解极限均为Ge(3P)+S(3P). 利用计算得到的势能曲线得了X1+, 11-, 11, A1和15+态的垂直跃迁能Te, 平衡键长Re, 离解能De, 谐振频率e, 非谐性常数exe及平衡位置的电偶极矩. X1+态的Re 为2.034 , De 为5.728 eV, e为571.73 cm-1, exe为1.6816 cm-1, 平衡位置的电偶极矩为1.9593 Debye. 激发态11, 11, A1, 15+的Te 依次为25904.81, 26209.22, 32601.19, 43770.26 cm-1; Re依次为2.313, 2.322, 2.188, 2.8790 ; De依次为2.524, 2.487, 1.694, 0.3036 eV, e依次为358.90, 353.08, 376.32, 134.96 cm-1; exe依次为1.2421, 1.2151, 1.6608, 1.9095 cm-1; 平衡位置的电偶极矩依次为1.3178, 1.4719, 1.5917, -1.9785 Debye. 通过求解核运动的薛定谔方程得到了J=0时X1+, 11-, 11, A1和15+态前30个振动态的振动能级Gv和分子常数Bv, 得到的结果和已有的实验值及其他理论值符合较好.
    The potential energy curves (PECs) for ground state (X1+) and five low-lying electronic states (11-, 11, A1, 15+, 25+) of the GeS molecule have been studied by multi-reference configuration interaction (MRCI) plus Davidson correction (+Q) with all-electron basis set aug-cc-pv5Z. Results show that the 25+ state is an unstable repulsive state, and the others are bound states, and the six electronic states are dissociated along the same channel, Ge(3P)+S(3P). The adiabatic transition energy Te equilibrium bond length Re, dissociation energy De, harmonic frequency e, anharmonic constant exe, and equilibrium dipole moments are obtained by fitting the PECs for the X1+, 11-, 11, A1 and 15+ states. While Re is 2.034 , De 5.728 eV, e 571.73 cm-1, exe 1.6816 cm-1, the equilibrium dipole moment is 1.9593 Debye for the ground state. The values of Te are 25904.81, 26209.22, 32601.19, 43770.26 cm-1 for 11, 11, A1 and 15+ states, respectively; the values of Re are 2.313, 2.322, 2.188, 2.8790 for 11, 11, A1 and 15+ states, respectively; the values of De are 2.524, 2.487, 1.694, 0.3036 eV for 11-, 11, A1 and 15+ states, respectively; the values of e are 358.90, 353.08, 376.32, 134.96 cm-1 for 11-, 11, A1 and 15+ states, respectively; the values of exe are 1.2421, 1.2151, 1.6608, 1.9095 cm-1 for 11, 11, A1 and 15+ states, respectively, and the values of equilibrium dipole moments are 1.3178, 1.4719, 1.5917, -1.9785 Debye for 11-, 11, A1 and 15+ states, respectively. By solving the radial Schrdinger equation of nuclear motion, the 30 vibration levels and 30 inertial rotation constants (J=0) for X1+, 11-, 11, A1 and 15+ states are also obtained, and all of are in good agreement with the available experimental and other theoretical values.
      通信作者: 王藩侯, fanhouwangyibin@163.com
    • 基金项目: 四川省教育厅科研基金(批准号: 13ZA0198)、宜宾市重点科技资助项目(批准号: 2012SF034)和宜宾学院科研项目(批准号: 2013QD10)资助的课题.
      Corresponding author: Wang Fan-Hou, fanhouwangyibin@163.com
    • Funds: Project Supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 13ZA0198), the Major Project of Yibin City of China (Grant No. 2012SF034), and the Scientific Research Key Project of Yibin University, China (Grant No. 2013QD10).
    [1]

    Wiley J D, Buckel W J, Braun W, Fehrenbach G W, Himpsel F J, Koch E E 1976 Phys. Rev. B 14 697

    [2]

    Dipankar G, Kalyan K D 2005 J. Phys. Chem. A 109 7207

    [3]

    Singh J P, Bedi R K 1991 Thin Solid Films 199 9

    [4]

    Loferski J J 1956 J. Appl. Phys. 27 777

    [5]

    Parentau M, Carlone M 1990 Phys. Rev. B 41 5227

    [6]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 043101]

    [7]

    Shapiro C V, Gibbs R C, Laubengayer A W 1932 Phys. Rev. 40 354

    [8]

    Magat P, Floch A C L, Lebreton J 1980 J. Phys. B 13 4143

    [9]

    Shetty B J, Krishnakumar S, Balasubramanian T K 2001 J. Mol. Spectrosc. 207 25

    [10]

    Uehara H, Horiai K, Sueoka K, Nakagawa K 1989 Chem. Phys. Lett. 160 149

    [11]

    Uehara H, Horiai K, Ozaki Y, Konno T 1995 J. Mol. Struct. 352-353 395

    [12]

    Coppens P, Smoes S, Drowart J 1967 Trans. Faraday Soc. 63 2140

    [13]

    Ogilvie J F 1996 Mol. Phys. 88 1055

    [14]

    Hoeft J, Lovas F J, Tiemann E, Tischer R, Trring T 1969 Z. Naturforsch 24a 1217

    [15]

    Koppe R, Schnockel H 1990 J. Mol. Struct. 238 429

    [16]

    Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189

    [17]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [18]

    Jalbout A F, Xin-hua L, Abou-Rachid H 2007 J. Quantum. Chem. 107 522

    [19]

    Dutta A, Chattopadhyaya S, Das K K 2001 J. Phys. Chem. A 105 3232

    [20]

    Shi D H 2011 J. Mol. Spectrosc. 269 143

    [21]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol.4) (New York: Van Nostrand Reinhold)

    [22]

    Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P,Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J. Version 2009

    [23]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663

    [24]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [25]

    Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667

    [26]

    Huang D H, Wang F H, Yang J S, Wan M J, Cao Q L, Yang M C 2014 Acta Phys. Sin. 63 083102 (in Chinese) [黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超 2014 物理学报 63 083102]

    [27]

    Linton C 1980 J. Mol. Spectrosc. 79 90

    [28]

    Balfour W J, Shetty B J 1993 Can. J. Chem. 71 1622

    [29]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [30]

    Wang M W, Wang B W, Chen Z D 2008 Sci. China: Series B: Chemistry 51 521

    [31]

    Molski M 1999 J. Mol. Spectrosc. 193 244

  • [1]

    Wiley J D, Buckel W J, Braun W, Fehrenbach G W, Himpsel F J, Koch E E 1976 Phys. Rev. B 14 697

    [2]

    Dipankar G, Kalyan K D 2005 J. Phys. Chem. A 109 7207

    [3]

    Singh J P, Bedi R K 1991 Thin Solid Films 199 9

    [4]

    Loferski J J 1956 J. Appl. Phys. 27 777

    [5]

    Parentau M, Carlone M 1990 Phys. Rev. B 41 5227

    [6]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 043101]

    [7]

    Shapiro C V, Gibbs R C, Laubengayer A W 1932 Phys. Rev. 40 354

    [8]

    Magat P, Floch A C L, Lebreton J 1980 J. Phys. B 13 4143

    [9]

    Shetty B J, Krishnakumar S, Balasubramanian T K 2001 J. Mol. Spectrosc. 207 25

    [10]

    Uehara H, Horiai K, Sueoka K, Nakagawa K 1989 Chem. Phys. Lett. 160 149

    [11]

    Uehara H, Horiai K, Ozaki Y, Konno T 1995 J. Mol. Struct. 352-353 395

    [12]

    Coppens P, Smoes S, Drowart J 1967 Trans. Faraday Soc. 63 2140

    [13]

    Ogilvie J F 1996 Mol. Phys. 88 1055

    [14]

    Hoeft J, Lovas F J, Tiemann E, Tischer R, Trring T 1969 Z. Naturforsch 24a 1217

    [15]

    Koppe R, Schnockel H 1990 J. Mol. Struct. 238 429

    [16]

    Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189

    [17]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [18]

    Jalbout A F, Xin-hua L, Abou-Rachid H 2007 J. Quantum. Chem. 107 522

    [19]

    Dutta A, Chattopadhyaya S, Das K K 2001 J. Phys. Chem. A 105 3232

    [20]

    Shi D H 2011 J. Mol. Spectrosc. 269 143

    [21]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol.4) (New York: Van Nostrand Reinhold)

    [22]

    Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P,Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J. Version 2009

    [23]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663

    [24]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [25]

    Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667

    [26]

    Huang D H, Wang F H, Yang J S, Wan M J, Cao Q L, Yang M C 2014 Acta Phys. Sin. 63 083102 (in Chinese) [黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超 2014 物理学报 63 083102]

    [27]

    Linton C 1980 J. Mol. Spectrosc. 79 90

    [28]

    Balfour W J, Shetty B J 1993 Can. J. Chem. 71 1622

    [29]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [30]

    Wang M W, Wang B W, Chen Z D 2008 Sci. China: Series B: Chemistry 51 521

    [31]

    Molski M 1999 J. Mol. Spectrosc. 193 244

  • [1] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [2] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [4] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [5] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [6] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [7] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [8] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [9] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [10] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [11] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [12] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [13] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [15] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [19] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  3096
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-08
  • 修回日期:  2016-01-07
  • 刊出日期:  2016-03-05

GeS分子基态和低激发态的势能曲线与光谱性质

  • 1. 宜宾学院 计算物理四川省高等学校重点实验室, 宜宾 644000
  • 通信作者: 王藩侯, fanhouwangyibin@163.com
    基金项目: 四川省教育厅科研基金(批准号: 13ZA0198)、宜宾市重点科技资助项目(批准号: 2012SF034)和宜宾学院科研项目(批准号: 2013QD10)资助的课题.

摘要: 本文以aug-cc-pv5Z为基组, 采用考虑Davidson修正的多参考组态相互作用方法(MRCI+Q)得到了GeS分子基态(X1+)和5个低激发态(11, 11, A1, 15+, 25+)的势能曲线. 计算结果表明: 25+态为排斥态, 其余5个态为束缚态; 6个态有着共同的离解通道, 离解极限均为Ge(3P)+S(3P). 利用计算得到的势能曲线得了X1+, 11-, 11, A1和15+态的垂直跃迁能Te, 平衡键长Re, 离解能De, 谐振频率e, 非谐性常数exe及平衡位置的电偶极矩. X1+态的Re 为2.034 , De 为5.728 eV, e为571.73 cm-1, exe为1.6816 cm-1, 平衡位置的电偶极矩为1.9593 Debye. 激发态11, 11, A1, 15+的Te 依次为25904.81, 26209.22, 32601.19, 43770.26 cm-1; Re依次为2.313, 2.322, 2.188, 2.8790 ; De依次为2.524, 2.487, 1.694, 0.3036 eV, e依次为358.90, 353.08, 376.32, 134.96 cm-1; exe依次为1.2421, 1.2151, 1.6608, 1.9095 cm-1; 平衡位置的电偶极矩依次为1.3178, 1.4719, 1.5917, -1.9785 Debye. 通过求解核运动的薛定谔方程得到了J=0时X1+, 11-, 11, A1和15+态前30个振动态的振动能级Gv和分子常数Bv, 得到的结果和已有的实验值及其他理论值符合较好.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回