搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激子极化子共振束缚介导的光合作用能量传输

杨旭云 陈永聪 芦文斌 朱晓梅 敖平

引用本文:
Citation:

激子极化子共振束缚介导的光合作用能量传输

杨旭云, 陈永聪, 芦文斌, 朱晓梅, 敖平

Energy transfer in photosynthesis mediated by resonant confinement of exciton-polariton

Yang Xu-Yun, Chen Yong-Cong, Lu Wen-Bin, Zhu Xiao-Mei, Ao Ping
PDF
HTML
导出引用
  • 光合作用中能量传输的超效率具有非常重要的生物学意义. 人们对于它的能量传递机制从未停止探索, 量子思想的广泛应用吸引着人们发掘自然现象背后的物理本质. 笔者前期采用激子极化子共振束缚介导的能量传输机制成功解释了超高效的人工光合作用实验, 这为生物体光合作用的机制提供了一种新的可能性. 本文具体研究了高等植物体和绿色硫细菌中进行光合作用的场所, 探索集光色素在光腔共振模型的束缚下, 其激子极化子可作为中间态介导能量传输. 通过充分发挥其双重特性, 以激子态形式接收供体吸收的太阳光, 光子态形式快速传递到受体, 从而实现能量的最大化利用. 基于已构建的理论模型, 结合实测数据进行数值分析, 结果表明该机制能很好地解释光合作用的超高效能量传输过程.
    The ultra efficiency of energy transfer in photosynthesis has important biological significance. The underlying mechanism of energy transfer has never stopped being explored. Possible roles of quantum mechanics behind the natural phenomenon lead to many explorations in the field. Yet conventional mechanisms based on Förster resonance energy transfer or localized quantum coherence effects face certain challenges in explaining the unusual efficiency. We hereby bring up the attention of the dual properties of wave and particle of quantum mechanics into this context. In a previous research, we attributed the success of a similar efficiency in an artificial photosynthesis experiment to a mechanism mediated by resonant confinement of exciton-polariton. This paper extends the work to biological photosynthesis in higher plants and green sulfur bacteria. We explore specifically whether the exciton-polaritons of light-harvesting pigments, constrained by the optical cavity resonance, can act as intermediate states to mediate energy transfer. Namely, the pigments give a full play to their dual roles, receiving sunlight in the form of particle-like excitons, and rapidly transferring them to the reaction centers in the form of wave-like polaritons for maximal energy utilization. Taking realistic structure and data into account and based on approximate theoretical models, our quantitative estimate shows that such a mechanism is indeed capable of explaining at least partly the efficiency of photosynthesis. With comprehensive discussion, many deficits in the theoretical modeling can be reasonably reduced. Thus the conclusion may be further strengthened by realistic situations. Meanwhile, the underlying approach may also be extended to e.g. photovoltaic applications and neural signal transmissions, offering similar mechanisms for other energy transfer processes.
      通信作者: 陈永聪, chenyongcong@shu.edu.cn ; 敖平, aoping@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 16Z103060007)资助的课题.
      Corresponding author: Chen Yong-Cong, chenyongcong@shu.edu.cn ; Ao Ping, aoping@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 16Z103060007).
    [1]

    林荣呈, 杨文强, 王柏臣, 于龙江, 王文达, 田利金, 迟伟, 卢庆陶, 韩广业, 匡廷云 2021 中国科学: 生命科学 51 1376Google Scholar

    Lin R C, Yang W Q, Wang B C, Yu L J, Wang W D, Tian L J, Chi W, Lu Q T, Hang G Y, Kuang T Y 2021 Sci. China Life. Sci. 51 1376Google Scholar

    [2]

    Mirkovic T, Ostroumov E E, Anna J M, van Grondelle R, Govindjee, Scholes G D 2016 Chem. Rev. 117 249Google Scholar

    [3]

    Chen Y C, Song B, Leggett A J, Ao P, Zhu X M 2019 Phys. Rev. Lett. 122 257402Google Scholar

    [4]

    Fassioli F, Dinshaw R, Arpin P C, Scholes G D 2014 J. R. Soc. Interface 11 20130901Google Scholar

    [5]

    Christensson N, Kauffmann H F, Pullerits T, Mančal T 2012 J. Phys. Chem. B 116 7449Google Scholar

    [6]

    Reimers J R, Biczysko M, Bruce D, et al. 2016 BBA-Biomembranes 1857 1627Google Scholar

    [7]

    Huang K 1951 Nature 167 779Google Scholar

    [8]

    Pines D, Bohm D 1952 Phys. Rev. 85 338565Google Scholar

    [9]

    Coles D, Flatten L C, Sydney T, Hounslow E, Saikin S K, Aspuru-Guzik A, Vedral V, Tang J K-H, Taylor R A, Smith J M, Lidzey D G 2017 Small 13 1701777Google Scholar

    [10]

    Coles D M, Yang Y S, Wang Y Y, Grant R T, Taylor R A, Saikin S K, Aspuru-Guzik A, Lidzey D G, Tang J K H, Smith J M 2014 Nat. Commun. 5 5561Google Scholar

    [11]

    Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y 2002 Science 298 199Google Scholar

    [12]

    Kasprzak J, Richard M, Kundermann S, et al. 2006 Nature 443 409Google Scholar

    [13]

    Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis K S, Dominici L, De Giorgi M, Maier S A, Gigli G, Kéna-Cohen S, Sanvitto D 2017 Nat. Phys. 13 837Google Scholar

    [14]

    Chen P Z, Weng Y X, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z 2016 Angew. Chem. Int. Edit. 55 2759Google Scholar

    [15]

    Strümpfer J, Sener M, Schulten K 2012 J. Phys. Chem. Lett. 3 536Google Scholar

    [16]

    朱圣庚, 徐长法, 王镜岩, 张庭芳, 昌增益, 秦咏梅 2016 生物化学 (第四版)(北京: 高等教育出版社) 第175—196页

    Zhu S G, Xu C F, Wang J Y, Zhang T F, Chang Z Y, Qin Y M 2016 Biochemistry (Fourth edition) (Beijing: Higher Education Press) pp175–196 (in Chinese)

    [17]

    Staehelin L A 2003 Photosynth. Res. 76 185Google Scholar

    [18]

    Murray J W, Duncan J, Barber J 2006 Trends Plant Sci. 11 152Google Scholar

    [19]

    Overmann J 2001 Archaea and the Deeply Branching and Phototrophic Bacteria (Berlin: Springer) p601

    [20]

    Wahlund T M, Woese C R, Castenholz R W, Madigan M T 1991 Arch. Microbiol 156 81Google Scholar

    [21]

    Oostergetel G T, van Amerongen H, Boekema E J 2010 Photosynth. Res. 104 245Google Scholar

    [22]

    Krasnok A E, Slobozhanyuk A P, Simovski C R, Tretyakov S A, Poddubny A N, Miroshnichenko A E, Kivshar Y S, Belov P A 2015 Sci. Rep. UK. 5 1Google Scholar

    [23]

    Mustárdy L, Buttle K, Steinbach G, Garab G 2008 The Plant Cell 20 2552Google Scholar

    [24]

    Kirchhoff H, Tremmel I, Haase W, Kubitscheck U 2004 Biochemistry-US 43 9204Google Scholar

    [25]

    Oviedo M B, Sanchez C G 2011 J. Phys. Chem. A 115 12280Google Scholar

    [26]

    Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R, May V 2004 J. Phys. Chem. B 108 13536Google Scholar

    [27]

    Kühlbrandt W, Wang D N 1991 Nature 350 130Google Scholar

    [28]

    Hankamer B, Barber J, Boekema E J 1997 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 641Google Scholar

    [29]

    Nield J, Orlova E V, Morris E P, Gowen B, van Heel M, Barber J 2000 Nat. Struct. Biol. 7 44Google Scholar

    [30]

    Bassi R, Hyer-Hansen G, Barbato R, Giacometti G M, Simpson D J 1987 J. Biol. Chem. 262 13333Google Scholar

    [31]

    Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki L, Lin S, Knox R S, Wittmershaus B P, Brune D C, Blankenship R E 1989 J. Phys. Chem. 93 7503Google Scholar

    [32]

    Orf G S, Blankenship R E 2013 Photosynth. Res. 116 315Google Scholar

    [33]

    Günther L M, Jendrny M, Bloemsma E A, Tank M, Oostergetel G T, Bryant D A, Knoester J, Kohler J 2016 J. Phys. Chem. B 120 5367Google Scholar

    [34]

    Lavergne J 2006 BBA-Biomembranes 1757 1453Google Scholar

    [35]

    Sahoo P C, Pant D, Kumar M, Puri S K, Ramakumar S S V 2020 Trends. Biotechnol. 38 1245Google Scholar

    [36]

    Song B, Shu Y S 2020 Nano Res. 13 38Google Scholar

  • 图 1  高等植物体中叶绿体的示意图[16,17]

    Fig. 1.  Illustrative structure of a chloroplast in higher plants[16,17].

    图 2  绿色硫细菌示意图[19,20]

    Fig. 2.  Structures of a green sulfur bacterium[19,20].

    图 3  矩形光腔中激子极化子介导能量示意图

    Fig. 3.  Processes of exciton-polariton mediated energy transfer in a rectangular optical cavity.

    图 4  当选定一组$ {k_x} $, $ {k_y} $模式时, 红色曲线表示极化子的归一化能量$ {E_{\boldsymbol{k}}}/{E_1} $$ {k_z}/{k_{\text{e}}} $的变化情况. 水平实线(顶边)和虚线分别表征$ {E_1} $$ {E_2} $, 竖直虚线右侧的部分表示全内反射所限制的模式 (a)${k_x} = {k_{\text{e}}}{, }\;{k_y} = {k_{\text{e}}}{, }\;{k_z} \geqslant 0.67{k_{\text{e}}};$ (b) ${k_x} ={1}/{2}{k_{\text{e}}}{, }\;{k_y} = {k_{\text{e}}},$ ${k_z} \geqslant 1.1{k_{\text{e}}}$

    Fig. 4.  The solid (red) curve shows the dependence of normalized energy $ {E_{\boldsymbol{k}}}/{E_1} $, on the quasi-continuous $ {k_z}/{k_{\text{e}}} $ for a selected set of $ {k_x} $, $ {k_y} $.The horizontal solid line (top frame-border) and the horizontal dashed line represents $ {E_1} $ and $ {E_2} $, the modes to the right of the vertical dash line are confined by total internal reflection: (a)${k_x} = {k_{\text{e}}}{, }~{k_y} = {k_{\text{e}}}{, }~{k_z} \geqslant 0.67{k_{\text{e}}}$; (b) ${k_x} = {1}/{2}{k_{\text{e}}}{, }\;{k_y} = $ $ {k_{\text{e}}}{, }\;{k_z} \geqslant 1.1{k_{\text{e}}} $.

    图 5  当选定一组$ {k_x} $, $ {k_y} $模式时, 红色曲线表示极化子的归一化能量$ {E_{\boldsymbol{k}}}/{E_1} $$ {k_z}/{k_{\text{e}}} $的变化情况. 水平实线(顶边)和虚线分别表征$ {E_1} $$ {E_2} $, 竖直虚线右侧的部分表示全内反射所限制的模式 (a) $ {k_x} = {k_{\text{e}}}{, }~{k_y} = {k_{\text{e}}}{, }{k_z} \geqslant 0.67{k_{\text{e}}} $; (b) ${k_x} = {1}/{2}{k_{\text{e}}}{, }~{k_y} = $ ${k_{\text{e}}}{, }~{k_z} \geqslant 1.1{k_{\text{e}}} $

    Fig. 5.  The solid (red) curve shows the dependence of normalized energy $ {E_{\boldsymbol{k}}}/{E_1} $, on the quasi-continuous $ {k_z}/{k_{\text{e}}} $ for a selected set of $ {k_x} $, $ {k_y} $. The horizontal solid line (top frame-border) and the horizontal dashed line represents $ {E_1} $ and $ {E_2} $, the modes to the right of the vertical dash line are confined by total internal reflection: (a) $ {k_x} = {k_{\text{e}}}{, }~{k_y} = {k_{\text{e}}}{, }~{k_z} \geqslant 0.67{k_{\text{e}}} $; (b) ${k_x} = {1}/{2}{k_{\text{e}}}{, }~{k_y} = $ $ {k_{\text{e}}}{, }~{k_z} \geqslant 1.1{k_{\text{e}}} $.

    表 1  高等植物体的参数值

    Table 1.  Parameters of higher plants.

    光合场所: 基粒 主要集光色素: Chl a
    形状直径高度 吸收峰发射峰偶极矩能量值
    圆柱体500 nm250 nm 674 nm 683 nm4.58 deb14841 cm–1
    下载: 导出CSV

    表 2  绿色硫细菌的参数值

    Table 2.  Parameters of green sulfur bacteria.

    光合场所: 绿色硫细菌 主要集光色素: BChl c
    形状直径高度 吸收峰发射峰偶极矩能量值
    椭圆体600 nm1600 nm 740 nm750 nm5.19 deb13476 cm–1
    下载: 导出CSV
  • [1]

    林荣呈, 杨文强, 王柏臣, 于龙江, 王文达, 田利金, 迟伟, 卢庆陶, 韩广业, 匡廷云 2021 中国科学: 生命科学 51 1376Google Scholar

    Lin R C, Yang W Q, Wang B C, Yu L J, Wang W D, Tian L J, Chi W, Lu Q T, Hang G Y, Kuang T Y 2021 Sci. China Life. Sci. 51 1376Google Scholar

    [2]

    Mirkovic T, Ostroumov E E, Anna J M, van Grondelle R, Govindjee, Scholes G D 2016 Chem. Rev. 117 249Google Scholar

    [3]

    Chen Y C, Song B, Leggett A J, Ao P, Zhu X M 2019 Phys. Rev. Lett. 122 257402Google Scholar

    [4]

    Fassioli F, Dinshaw R, Arpin P C, Scholes G D 2014 J. R. Soc. Interface 11 20130901Google Scholar

    [5]

    Christensson N, Kauffmann H F, Pullerits T, Mančal T 2012 J. Phys. Chem. B 116 7449Google Scholar

    [6]

    Reimers J R, Biczysko M, Bruce D, et al. 2016 BBA-Biomembranes 1857 1627Google Scholar

    [7]

    Huang K 1951 Nature 167 779Google Scholar

    [8]

    Pines D, Bohm D 1952 Phys. Rev. 85 338565Google Scholar

    [9]

    Coles D, Flatten L C, Sydney T, Hounslow E, Saikin S K, Aspuru-Guzik A, Vedral V, Tang J K-H, Taylor R A, Smith J M, Lidzey D G 2017 Small 13 1701777Google Scholar

    [10]

    Coles D M, Yang Y S, Wang Y Y, Grant R T, Taylor R A, Saikin S K, Aspuru-Guzik A, Lidzey D G, Tang J K H, Smith J M 2014 Nat. Commun. 5 5561Google Scholar

    [11]

    Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y 2002 Science 298 199Google Scholar

    [12]

    Kasprzak J, Richard M, Kundermann S, et al. 2006 Nature 443 409Google Scholar

    [13]

    Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis K S, Dominici L, De Giorgi M, Maier S A, Gigli G, Kéna-Cohen S, Sanvitto D 2017 Nat. Phys. 13 837Google Scholar

    [14]

    Chen P Z, Weng Y X, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z 2016 Angew. Chem. Int. Edit. 55 2759Google Scholar

    [15]

    Strümpfer J, Sener M, Schulten K 2012 J. Phys. Chem. Lett. 3 536Google Scholar

    [16]

    朱圣庚, 徐长法, 王镜岩, 张庭芳, 昌增益, 秦咏梅 2016 生物化学 (第四版)(北京: 高等教育出版社) 第175—196页

    Zhu S G, Xu C F, Wang J Y, Zhang T F, Chang Z Y, Qin Y M 2016 Biochemistry (Fourth edition) (Beijing: Higher Education Press) pp175–196 (in Chinese)

    [17]

    Staehelin L A 2003 Photosynth. Res. 76 185Google Scholar

    [18]

    Murray J W, Duncan J, Barber J 2006 Trends Plant Sci. 11 152Google Scholar

    [19]

    Overmann J 2001 Archaea and the Deeply Branching and Phototrophic Bacteria (Berlin: Springer) p601

    [20]

    Wahlund T M, Woese C R, Castenholz R W, Madigan M T 1991 Arch. Microbiol 156 81Google Scholar

    [21]

    Oostergetel G T, van Amerongen H, Boekema E J 2010 Photosynth. Res. 104 245Google Scholar

    [22]

    Krasnok A E, Slobozhanyuk A P, Simovski C R, Tretyakov S A, Poddubny A N, Miroshnichenko A E, Kivshar Y S, Belov P A 2015 Sci. Rep. UK. 5 1Google Scholar

    [23]

    Mustárdy L, Buttle K, Steinbach G, Garab G 2008 The Plant Cell 20 2552Google Scholar

    [24]

    Kirchhoff H, Tremmel I, Haase W, Kubitscheck U 2004 Biochemistry-US 43 9204Google Scholar

    [25]

    Oviedo M B, Sanchez C G 2011 J. Phys. Chem. A 115 12280Google Scholar

    [26]

    Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R, May V 2004 J. Phys. Chem. B 108 13536Google Scholar

    [27]

    Kühlbrandt W, Wang D N 1991 Nature 350 130Google Scholar

    [28]

    Hankamer B, Barber J, Boekema E J 1997 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 641Google Scholar

    [29]

    Nield J, Orlova E V, Morris E P, Gowen B, van Heel M, Barber J 2000 Nat. Struct. Biol. 7 44Google Scholar

    [30]

    Bassi R, Hyer-Hansen G, Barbato R, Giacometti G M, Simpson D J 1987 J. Biol. Chem. 262 13333Google Scholar

    [31]

    Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki L, Lin S, Knox R S, Wittmershaus B P, Brune D C, Blankenship R E 1989 J. Phys. Chem. 93 7503Google Scholar

    [32]

    Orf G S, Blankenship R E 2013 Photosynth. Res. 116 315Google Scholar

    [33]

    Günther L M, Jendrny M, Bloemsma E A, Tank M, Oostergetel G T, Bryant D A, Knoester J, Kohler J 2016 J. Phys. Chem. B 120 5367Google Scholar

    [34]

    Lavergne J 2006 BBA-Biomembranes 1757 1453Google Scholar

    [35]

    Sahoo P C, Pant D, Kumar M, Puri S K, Ramakumar S S V 2020 Trends. Biotechnol. 38 1245Google Scholar

    [36]

    Song B, Shu Y S 2020 Nano Res. 13 38Google Scholar

  • [1] 王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪. 纯红荧烯器件中极化子对的系间窜越与高能三重态激子的反向系间窜越过程“消失”的原因. 物理学报, 2022, 71(21): 217201. doi: 10.7498/aps.71.20221060
    [2] 陈浩, 田建民, 孙雪健, 吕可真, 徐莉华, 李宏荣. 光合作用多色素捕光模型中光激发对能量传输的影响. 物理学报, 2022, 71(10): 104203. doi: 10.7498/aps.71.20211960
    [3] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [4] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光. 物理学报, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [5] 白旭芳, 乌云其木格, 辛伟, 额尔敦朝鲁. Rashba自旋-轨道相互作用影响下量子盘中强耦合磁极化子性质的研究. 物理学报, 2014, 63(17): 177803. doi: 10.7498/aps.63.177803
    [6] 李宏宇, 张强, 王春玲, 阳伏林, 赵建华. 空气热储存、光合作用和土壤垂直水分运动对黄土高原地表能量平衡的影响. 物理学报, 2012, 61(15): 159201. doi: 10.7498/aps.61.159201
    [7] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究. 物理学报, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [8] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [9] 额尔敦朝鲁. 温度和极化子效应对准二维强耦合激子基态的影响. 物理学报, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [10] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [11] 任学藻, 廖 旭, 刘 涛, 汪克林. 电子与双声子相互作用对Holstein极化子的影响. 物理学报, 2006, 55(6): 2865-2870. doi: 10.7498/aps.55.2865
    [12] 张 淳, 马允胜, 孙 鑫, 叶 成. 电子相互作用和高聚物中的极化子. 物理学报, 1999, 48(5): 917-925. doi: 10.7498/aps.48.917
    [13] 傅柔励, 叶红娟, 李 蕾, 傅荣堂, 缪 健, 孙 鑫, 张志林. 电场作用下高分子中自陷束缚激子的极化. 物理学报, 1998, 47(1): 94-101. doi: 10.7498/aps.47.94
    [14] 许宗荣, 田之悦. 一维分子链中的极化子. 物理学报, 1995, 44(9): 1467-1470. doi: 10.7498/aps.44.1467
    [15] 汪克林, 陈庆虎, 完绍龙. 极化子新的变分计算. 物理学报, 1994, 43(3): 433-437. doi: 10.7498/aps.43.433
    [16] 黄青锋, 傅荣堂, 孙鑫, 傅柔励. 电子关联对C60激子极化子的影响. 物理学报, 1994, 43(11): 1833-1839. doi: 10.7498/aps.43.1833
    [17] 李景德, 陆夏莲, 雷德铭. 高绝缘体中的极化子. 物理学报, 1992, 41(11): 1898-1905. doi: 10.7498/aps.41.1898
    [18] 刘杰, 方可, 孙鑫. 电子相互作用对聚乙炔中极化子电子态的影响. 物理学报, 1989, 38(1): 9-15. doi: 10.7498/aps.38.9
    [19] 邢定钰, 龚昌德. 1:3 Peierls系统中的极化子. 物理学报, 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
    [20] 潘金声. 极性晶体的表面或界面极化子. 物理学报, 1982, 31(3): 335-347. doi: 10.7498/aps.31.335
计量
  • 文章访问数:  2712
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-15
  • 修回日期:  2022-08-15
  • 上网日期:  2022-11-29
  • 刊出日期:  2022-12-05

/

返回文章
返回