搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多通道石墨纳米带中弹性声学声子输运和热导特性

卿前军 周欣 谢芳 陈丽群 王新军 谭仕华 彭小芳

引用本文:
Citation:

多通道石墨纳米带中弹性声学声子输运和热导特性

卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳

Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions

Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang
PDF
导出引用
  • 采用非平衡格林函数方法, 在保持总的能量输出通道中石墨链数不变的条件下, 研究并比较了并列的石墨纳米带通道中弹性声学声子输运和热导特性. 结果表明, 能量输出通道的增加能降低每个能量输出通道的热导; 与能量输入热库最近的能量输出通道热导最大, 最远的能量输出通道热导最小; 中间能量输出通道的热导性质与并列的各输出通道的结构参数密切相关, 最近和最远的能量输出通道的热导性质仅与各自能量输出通道的结构参数有关; 粗糙边缘结构能有效调节各通道的热导; 总的热导性质与能量输出通道石墨链数、能量输出通道数以及边缘结构粗糙程度密切相关.
    By using non-equilibrium Greens function method, we investigate the transmission rate of acoustic phonon and thermal conductance through a parallel multi-terminal graphene junctions, the relationship between the thermal-transport property in each terminal and the number of quantum terminals, the relationship between the thermal-transport property in each terminal and the relative position of quantum terminals in quantum structure, and also study the thermaltransport property in each terminal and the rough degree of edge structure. The results show that when the graphene chains (dimer lines) across the ribbon width are fixed, the increase of the number of the parallel multi-terminal graphene junctions can reduce the transmission rate of the phonons and the thermal conductance of each output terminal as well. This is because the increase of the number of the graphene junctions can lead to the decrease of the transverse dimension of the each output terminal, which enlarges the strength of the phonon scattering and results in the reduction of the phonon transmission. Owing to long distance scattering, the transmission rate of the phonons of the furthest distant output terminal is the smallest, and also the thermal conductance of the furthest output terminal is the smallest. On the contrary, the strength of the phonon scattering is the weakest for the closest output terminal. So the transmission rate of the phonons is the biggest, which induces the thermal conductance to be the biggest. The thermal conductance of the middle-output terminal depends sensitively on the structural parameters of each terminal. This is because mainly the relative position between the middle-output terminal and the phonon-input terminal is related closely to the structural parameters of each terminal, which can influence the strength of the phonon scattering and the transmission rate of the phonons. However, the thermal conductances in the top and bottom output terminals are just sensitively dependent on the structural parameters of the respective output terminal. This is because the relative position between the top (or bottom) output terminal and the phonon-input terminal is only related to the structural parameters of the respective output terminal. The rough edge structure can reduce obviously the transmission rate of the phonons, and the thermal conductance of the closest output terminal as well. The rough edge structure can modulate slightly the transmission rate of the phonons and the thermal conductance of the other output terminal. The total thermal conductance is related closely to the number of total graphene chains, the number of the multi-terminal graphene junctions, and the rough degree of edge structure. These results shed new light on the understanding of the thermal transport behaviors of multi-terminal junction quantum devices based on graphene-based nanomaterials in practical application.
      通信作者: 陈丽群, ldclun@163.com;xiaofangpeng11@163com ; 彭小芳, ldclun@163.com;xiaofangpeng11@163com
    • 基金项目: 国家自然科学基金(批准号: 11247030)、湖南省自然科学基金(批准号: 14JJ4054)、长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室开放基金(批准号: 20150103)、中南林业科技大学人才引进计划(批准号: 104-0160)、江西省自然科学基金(批准号: 20122BAB212009)和江西省教育厅科技项目(批准号: GJJ12601)资助的课题.
      Corresponding author: Chen Li-Qun, ldclun@163.com;xiaofangpeng11@163com ; Peng Xiao-Fang, ldclun@163.com;xiaofangpeng11@163com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11247030), the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ4054), the Open Research Fund of the Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science and Technology, China (Grant No. 20150103), the Talent Introducing Foundation of Central South University of Forestry and Technology, China (Grant No. 104-0160), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB212009), and the Scientific Research Fund of Jiangxi Provincial Education Department of China (Grant No. GJJ12601).
    [1]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [2]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [3]

    Basko D 2011 Science 334 610

    [4]

    Prasher R 2010 Nature 328 185

    [5]

    Yao H F, Xie Y E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]

    [6]

    Sun Q F, Yang P, Guo H 2002 Phys. Rev. Lett. 89 175901

    [7]

    Peng X F, Chen K Q 2015 Sci. Rep. 5 16215

    [8]

    Tan S H, Tang L M, Chen K Q 2014 Phys. Lett. A 378 1952

    [9]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2013 Appl. Phys. Lett. 103 263118

    [10]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [11]

    Zhang G, Zhang H 2011 Nanoscale 3 4604

    [12]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [13]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [14]

    Ping Y, Qing F S, Hong G, Bambi H 2007 Phys. Rev. B 75 235319

    [15]

    Hua Y C, Cao B Y 2015 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]

    [16]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [17]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [18]

    Yao W J, Cao B Y 2014 Chin. Sci. Bull. 27 3495

    [19]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [20]

    Bai K K, Zhou Y, Zheng H 2014 Phys. Rev. Lett. 113 086102

    [21]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [22]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

    [23]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [24]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [27]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [28]

    Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [29]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [30]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J 2011 Appl. Phys. Lett. 99 233101

    [32]

    Sevinli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [33]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [34]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [35]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [36]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [37]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [38]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [39]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [40]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Computational Materials Science 77 440

    [41]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [42]

    Xu Y, Li Z, Duan W 2014 Small 11 2182

    [43]

    Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324

    [44]

    Xia J B, Li S S 2003 Phys. Rev. B 68 75310

  • [1]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [2]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [3]

    Basko D 2011 Science 334 610

    [4]

    Prasher R 2010 Nature 328 185

    [5]

    Yao H F, Xie Y E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]

    [6]

    Sun Q F, Yang P, Guo H 2002 Phys. Rev. Lett. 89 175901

    [7]

    Peng X F, Chen K Q 2015 Sci. Rep. 5 16215

    [8]

    Tan S H, Tang L M, Chen K Q 2014 Phys. Lett. A 378 1952

    [9]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2013 Appl. Phys. Lett. 103 263118

    [10]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [11]

    Zhang G, Zhang H 2011 Nanoscale 3 4604

    [12]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [13]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [14]

    Ping Y, Qing F S, Hong G, Bambi H 2007 Phys. Rev. B 75 235319

    [15]

    Hua Y C, Cao B Y 2015 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]

    [16]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [17]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [18]

    Yao W J, Cao B Y 2014 Chin. Sci. Bull. 27 3495

    [19]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [20]

    Bai K K, Zhou Y, Zheng H 2014 Phys. Rev. Lett. 113 086102

    [21]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [22]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

    [23]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [24]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [27]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [28]

    Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [29]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [30]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J 2011 Appl. Phys. Lett. 99 233101

    [32]

    Sevinli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [33]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [34]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [35]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [36]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [37]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [38]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [39]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [40]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Computational Materials Science 77 440

    [41]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [42]

    Xu Y, Li Z, Duan W 2014 Small 11 2182

    [43]

    Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324

    [44]

    Xia J B, Li S S 2003 Phys. Rev. B 68 75310

  • [1] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [2] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211477
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江. 聚噻吩单链量子热输运的第一性原理研究. 物理学报, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [6] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响. 物理学报, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [7] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运. 物理学报, 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [8] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运. 物理学报, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [10] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [11] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质. 物理学报, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [12] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导. 物理学报, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [13] 安兴涛, 穆惠英, 咸立芬, 刘建军. 量子点双链中电子自旋极化输运性质. 物理学报, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [14] 鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新. L型石墨纳米结的热输运. 物理学报, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [15] 聂六英, 李春先, 周晓萍, 程芳, 王成志. 结构缺陷对量子波导腔中热导的调控. 物理学报, 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [16] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [17] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导. 物理学报, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [18] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [19] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性. 物理学报, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [20] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究. 物理学报, 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
计量
  • 文章访问数:  3044
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-20
  • 修回日期:  2016-01-14
  • 刊出日期:  2016-04-05

多通道石墨纳米带中弹性声学声子输运和热导特性

    基金项目: 国家自然科学基金(批准号: 11247030)、湖南省自然科学基金(批准号: 14JJ4054)、长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室开放基金(批准号: 20150103)、中南林业科技大学人才引进计划(批准号: 104-0160)、江西省自然科学基金(批准号: 20122BAB212009)和江西省教育厅科技项目(批准号: GJJ12601)资助的课题.

摘要: 采用非平衡格林函数方法, 在保持总的能量输出通道中石墨链数不变的条件下, 研究并比较了并列的石墨纳米带通道中弹性声学声子输运和热导特性. 结果表明, 能量输出通道的增加能降低每个能量输出通道的热导; 与能量输入热库最近的能量输出通道热导最大, 最远的能量输出通道热导最小; 中间能量输出通道的热导性质与并列的各输出通道的结构参数密切相关, 最近和最远的能量输出通道的热导性质仅与各自能量输出通道的结构参数有关; 粗糙边缘结构能有效调节各通道的热导; 总的热导性质与能量输出通道石墨链数、能量输出通道数以及边缘结构粗糙程度密切相关.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回