搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理

邢兰俊 常永勤 邵长景 王琳 龙毅

引用本文:
Citation:

Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理

邢兰俊, 常永勤, 邵长景, 王琳, 龙毅

Room temperature gas sensing property and sensing mechanism of Sn-doped ZnO thin film

Xing Lan-Jun, Chang Yong-Qin, Shao Chang-Jing, Wang Lin, Long Yi
PDF
导出引用
  • 采用化学气相沉积方法在预制好电极的玻璃基底上制备出Sn掺杂ZnO薄膜和纯ZnO薄膜. 两种样品典型的形貌为四足状ZnO晶须, 其直径约为150-400 nm, 呈疏松状结构. 气敏测试结果显示Sn掺杂ZnO薄膜具有优良的室温气敏性, 并对乙醇具有良好的气敏选择性, 而纯ZnO薄膜在室温条件下对乙醇和丙酮均没有气敏响应. X射线衍射结果表明两种样品均为六方纤锌矿结构. Sn掺杂ZnO样品中没有出现Sn及其氧化物的衍射峰, 其衍射结果与纯ZnO样品对比, 衍射峰向小角度偏移. 光致发光结果表明, Sn掺杂ZnO薄膜与纯ZnO薄膜均出现紫外发光峰和缺陷发光峰, 但是Sn的掺杂使得ZnO的缺陷发光峰明显增强. 将Sn掺杂ZnO样品在空气中退火后, 其室温气敏性消失, 说明Sn掺杂ZnO样品的室温气敏性可能与其缺陷含量高有关. 采用自由电子散射模型解释了Sn掺杂ZnO薄膜的室温气敏机理.
    Sn-doped ZnO and pure ZnO thin films are deposited on glass substrates with prepared electrode by the chemical vapor deposition method. The gas sensing performances of Sn-doped ZnO and pure ZnO thin films are investigated by our home-made system at room temperature, and the gas sensing test results reveal that Sn-doped ZnO thin film exhibits high gas response to ethanol and acetone, while no response is detected for pure ZnO to ethanol or acetone at room temperature. Sn-doped ZnO thin film also has high selectivity that the response to ethanol is higher than that to acetone in the same measurement conditions, and the response of Sn-doped ZnO thin film sample to ethanol is almost the third largest when the concentration is 320 ppm. The typical scanning electron microscopy images reveal that these two samples are tetrapod-shaped ZnO whiskers with diameters in a range of about 150-400 nm. X-ray diffraction results indicate that all the samples are of wurtzite structure. Neither trace of Sn, nor that of Sn alloy nor that of Sn oxide is detected in the Sn-doped ZnO film, while its diffraction peak shifts towards the left compared with that of pure ZnO sample, which suggests that Sn atoms exist in the form of interstitial atoms in the ZnO crystal. The energy dispersive spectrum shows that the Sn-doped ZnO thin film is composed of Zn and O elements, and no Sn signal is defected. Photoluminescence spectra reveal that both Sn-doped ZnO and pure ZnO films have ultraviolet light emission peaks and green emission peaks, while the intensities of the defect emissions are significantly enhanced by doping of Sn. In addition, no gas response to ethanol is detected after Sn-doped ZnO thin film has been annealed in the air, which indicates that the room temperature gas sensitivity of the Sn-doped ZnO thin film may be related to its high defect concentration. The working mechanism of Sn-doped ZnO thin film is explained by a free electron random scattering model. As is well known, ZnO semiconductor gas-sensor is of surface-controlled type. In this work, upon exposure to ethanol vapor, the physical absorbed ethanol molecules acting as scattering centers can reduce the mean free path of the electrons in the surface of the film, changing the mean free time n, which would increase the resistance of Sn-doped ZnO thin film at room temperature. This work provides a simple method of fabricating the highly sensitive ethanol gas sensor operating at room temperature, which has great potential applications in gas sensor field.
      通信作者: 常永勤, chang@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 50502005, 11175014)和新世纪优秀人才计划(批准号: NCET-07-0065)资助的课题.
      Corresponding author: Chang Yong-Qin, chang@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50502005, 11175014) and Program for New Century Excellent Talents in University, China (Grant No. NCET-07-0065).
    [1]

    Liu J, Jia T, Zhou K, Feng D, Zhang S, Zhang H, Jia X, Sun Z, Qiu J 2014 Opt. Express 22 32361

    [2]

    Chen D D, Xu F, Cao R N, Jiang Z M, Ma Z Q, Yang J, Du H W, Hong F 2015 Acta Phys. Sin. 64 047104 (in Chinese) [陈丹丹, 徐飞, 曹汝楠, 蒋最敏, 马忠权, 杨洁, 杜汇伟, 洪峰 2015 物理学报 64 047104]

    [3]

    Naik K K, Khare R, Chakravarty D, More M A, Thapa R, Late D J, Rout C S 2014 Appl. Phys. Lett. 105 233101

    [4]

    Laurenti M, Canavese G, Sacco A, Fontana M, Bejtka K, Castellino M, Pirri C F, Cauda V 2015 Adv. Mater. 27 4218

    [5]

    Qi J J, Xu M X, Hu X F, Zhang Y 2015 Acta Phys. Sin. 64 172901 (in Chinese) [齐俊杰, 徐旻轩, 胡晓峰, 张跃 2015 物理学报 64 172901]

    [6]

    Xing L L, Hu Y F, Wang P L, Zhao Y Y, Nie Y X, Deng P, Xue X Y 2014 Appl. Phys. Lett. 104 013109

    [7]

    Kashif M, Ali M E, Ali S M U, Hashim U 2013 Ceram. Int. 39 6461

    [8]

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803 (in Chinese) [薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803]

    [9]

    Xuan T M, Yin G L, Ge M Y, Lin L, He D N 2015 Mater. Rew. 29 132 (in Chinese) [宣天美, 尹桂林, 葛美英, 林琳, 何丹农 2015 材料导报 29 132]

    [10]

    Park S, Hong T, Jung J, Lee C 2014 Curr. Appl. Phys. 14 1171

    [11]

    Zhai J L, Wang L L, Wang D J, Lin Y H, He D Q, Xie T F 2012 Sens. Actuators B: Chem. 161 292

    [12]

    Gong J, Li Y H, Chai X S, Hu Z S, Deng Y L 2010 J. Phys. Chem. C 114 1293

    [13]

    Wang P L, Fu Y M, Yu B W, Zhao Y Y, Xing L L, Xue X Y 2015 J. Mater. Chem. A 3 3529

    [14]

    Fan S W, Srivastava A K, Dravid V P 2010 Sens. Actuators B: Chem. 144 159

    [15]

    Park S, An S, Mun Y, Lee C 2013 ACS Appl. Mater. Interf. 5 4285

    [16]

    Yu M R, Suyambrakasam G, Wu R J, Chavali M 2012 Mater. Res. Bull. 47 1713

    [17]

    Zhou X Y, Xue Q Z, Chen H J, Liu C Z 2010 Physica E 42 2021

    [18]

    Yu M R, Wu R J, Chavali M 2011 Sens. Actuators B: Chem. 153 321

    [19]

    Shao C J, Chang Y Q, Long Y 2014 Sens. Actuators B: Chem. 204 666

    [20]

    Chung F C, Zhu Z, Luo P Y, Wu R J, Li W 2014 Sens. Actuators B: Chem. 199 314

    [21]

    Lin Y J, Deng P, Nie Y X, Hu Y F, Xing L L, Zhang Y, Xue Xin Y 2014 Nanoscale 6 4604

    [22]

    Gui Y H, Zhang Y, Wang H X, Xu J Q, Li C 2008 Electron. Compon. Mater. 27 13 (in Chinese) [桂阳海, 张勇, 王焕新, 徐甲强, 李超 2008 电子元件与材料 27 13]

    [23]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 物理学报 63 207102]

    [24]

    Fujii M, Iwanaga H, Ichihara M, Takeuchi S 1993 J. Cryst. Growth 128 1095

    [25]

    Dai Y, Zhang Y, Wang Z L 2003 Solid State Commun. 126 629

    [26]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [27]

    Chen H S, Qi J J, Huang Y H 2007 Acta Phys. -Chim. Sin. 23 55 (in Chinese) [陈红升, 齐俊杰, 黄运华 2007 物理化学学报 23 55]

    [28]

    Zhao Y, Wang Q 2012 Sensitive Materials and Sensing Devices (Beijing: Mechanical industry press) p267-268 (in Chinese) [赵勇, 王琦 2012 传感器敏感材 料与器件(北京: 机械工业出版社)第267-268页]

    [29]

    Jia X H, Fan H Q 2010 Mater. Lett. 64 1574

    [30]

    Gong H, Hu J Q, Wang J H, Ong C H, Zhu F R 2006 Sens. Actuators B: Chem. 115 247

    [31]

    Tobin R G 2002 Surf. Sci. 502 374

  • [1]

    Liu J, Jia T, Zhou K, Feng D, Zhang S, Zhang H, Jia X, Sun Z, Qiu J 2014 Opt. Express 22 32361

    [2]

    Chen D D, Xu F, Cao R N, Jiang Z M, Ma Z Q, Yang J, Du H W, Hong F 2015 Acta Phys. Sin. 64 047104 (in Chinese) [陈丹丹, 徐飞, 曹汝楠, 蒋最敏, 马忠权, 杨洁, 杜汇伟, 洪峰 2015 物理学报 64 047104]

    [3]

    Naik K K, Khare R, Chakravarty D, More M A, Thapa R, Late D J, Rout C S 2014 Appl. Phys. Lett. 105 233101

    [4]

    Laurenti M, Canavese G, Sacco A, Fontana M, Bejtka K, Castellino M, Pirri C F, Cauda V 2015 Adv. Mater. 27 4218

    [5]

    Qi J J, Xu M X, Hu X F, Zhang Y 2015 Acta Phys. Sin. 64 172901 (in Chinese) [齐俊杰, 徐旻轩, 胡晓峰, 张跃 2015 物理学报 64 172901]

    [6]

    Xing L L, Hu Y F, Wang P L, Zhao Y Y, Nie Y X, Deng P, Xue X Y 2014 Appl. Phys. Lett. 104 013109

    [7]

    Kashif M, Ali M E, Ali S M U, Hashim U 2013 Ceram. Int. 39 6461

    [8]

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803 (in Chinese) [薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803]

    [9]

    Xuan T M, Yin G L, Ge M Y, Lin L, He D N 2015 Mater. Rew. 29 132 (in Chinese) [宣天美, 尹桂林, 葛美英, 林琳, 何丹农 2015 材料导报 29 132]

    [10]

    Park S, Hong T, Jung J, Lee C 2014 Curr. Appl. Phys. 14 1171

    [11]

    Zhai J L, Wang L L, Wang D J, Lin Y H, He D Q, Xie T F 2012 Sens. Actuators B: Chem. 161 292

    [12]

    Gong J, Li Y H, Chai X S, Hu Z S, Deng Y L 2010 J. Phys. Chem. C 114 1293

    [13]

    Wang P L, Fu Y M, Yu B W, Zhao Y Y, Xing L L, Xue X Y 2015 J. Mater. Chem. A 3 3529

    [14]

    Fan S W, Srivastava A K, Dravid V P 2010 Sens. Actuators B: Chem. 144 159

    [15]

    Park S, An S, Mun Y, Lee C 2013 ACS Appl. Mater. Interf. 5 4285

    [16]

    Yu M R, Suyambrakasam G, Wu R J, Chavali M 2012 Mater. Res. Bull. 47 1713

    [17]

    Zhou X Y, Xue Q Z, Chen H J, Liu C Z 2010 Physica E 42 2021

    [18]

    Yu M R, Wu R J, Chavali M 2011 Sens. Actuators B: Chem. 153 321

    [19]

    Shao C J, Chang Y Q, Long Y 2014 Sens. Actuators B: Chem. 204 666

    [20]

    Chung F C, Zhu Z, Luo P Y, Wu R J, Li W 2014 Sens. Actuators B: Chem. 199 314

    [21]

    Lin Y J, Deng P, Nie Y X, Hu Y F, Xing L L, Zhang Y, Xue Xin Y 2014 Nanoscale 6 4604

    [22]

    Gui Y H, Zhang Y, Wang H X, Xu J Q, Li C 2008 Electron. Compon. Mater. 27 13 (in Chinese) [桂阳海, 张勇, 王焕新, 徐甲强, 李超 2008 电子元件与材料 27 13]

    [23]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 物理学报 63 207102]

    [24]

    Fujii M, Iwanaga H, Ichihara M, Takeuchi S 1993 J. Cryst. Growth 128 1095

    [25]

    Dai Y, Zhang Y, Wang Z L 2003 Solid State Commun. 126 629

    [26]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [27]

    Chen H S, Qi J J, Huang Y H 2007 Acta Phys. -Chim. Sin. 23 55 (in Chinese) [陈红升, 齐俊杰, 黄运华 2007 物理化学学报 23 55]

    [28]

    Zhao Y, Wang Q 2012 Sensitive Materials and Sensing Devices (Beijing: Mechanical industry press) p267-268 (in Chinese) [赵勇, 王琦 2012 传感器敏感材 料与器件(北京: 机械工业出版社)第267-268页]

    [29]

    Jia X H, Fan H Q 2010 Mater. Lett. 64 1574

    [30]

    Gong H, Hu J Q, Wang J H, Ong C H, Zhu F R 2006 Sens. Actuators B: Chem. 115 247

    [31]

    Tobin R G 2002 Surf. Sci. 502 374

  • [1] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220388
    [2] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [3] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能. 物理学报, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [6] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [8] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [9] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [10] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [11] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [12] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [13] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [14] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [15] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [16] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [18] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [19] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究. 物理学报, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  3639
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-01
  • 修回日期:  2016-02-12
  • 刊出日期:  2016-05-05

Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理

  • 1. 北京科技大学材料科学与工程学院, 北京 100083
  • 通信作者: 常永勤, chang@ustb.edu.cn
    基金项目: 国家自然科学基金(批准号: 50502005, 11175014)和新世纪优秀人才计划(批准号: NCET-07-0065)资助的课题.

摘要: 采用化学气相沉积方法在预制好电极的玻璃基底上制备出Sn掺杂ZnO薄膜和纯ZnO薄膜. 两种样品典型的形貌为四足状ZnO晶须, 其直径约为150-400 nm, 呈疏松状结构. 气敏测试结果显示Sn掺杂ZnO薄膜具有优良的室温气敏性, 并对乙醇具有良好的气敏选择性, 而纯ZnO薄膜在室温条件下对乙醇和丙酮均没有气敏响应. X射线衍射结果表明两种样品均为六方纤锌矿结构. Sn掺杂ZnO样品中没有出现Sn及其氧化物的衍射峰, 其衍射结果与纯ZnO样品对比, 衍射峰向小角度偏移. 光致发光结果表明, Sn掺杂ZnO薄膜与纯ZnO薄膜均出现紫外发光峰和缺陷发光峰, 但是Sn的掺杂使得ZnO的缺陷发光峰明显增强. 将Sn掺杂ZnO样品在空气中退火后, 其室温气敏性消失, 说明Sn掺杂ZnO样品的室温气敏性可能与其缺陷含量高有关. 采用自由电子散射模型解释了Sn掺杂ZnO薄膜的室温气敏机理.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回