搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调制激光场中Rydberg原子的电磁感应透明

杨智伟 焦月春 韩小萱 赵建明 贾锁堂

引用本文:
Citation:

调制激光场中Rydberg原子的电磁感应透明

杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂

Electromagnetically induced transparency of Rydberg atoms in modulated laser fields

Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang
PDF
导出引用
  • 本文主要研究了调制探测激光场中铯Rydberg 原子阶梯型三能级系统的电磁感应透明(EIT) 效应. 铯原子基态6S1/2, 第一激发态6P3/2 和Rydberg 态形成阶梯型三能级系统, 探测光作用于6S1/2 (F = 4)6P3/2(F' = 5) 的跃迁, 耦合光在Rydberg 跃迁线6P3/249S1/2 附近扫描, 形成Rydberg 原子EIT. 当对探测光频率施加一个几kHz 的调制时, 调制解调后的EIT 信号分裂为两个峰, 双峰间距与调制频率无关,而与调制幅度导致的失谐量大小(频率调制幅度) 成正比, 双峰间隔的一半等于探测光频率调制幅度的p/c = 1.67 倍. 实验结果与理论计算相一致. 本文的研究结果可应用于激光线型和频率抖动的实时监测.
    Rydberg atoms, with large principal quantum number n, have been widely investigated in recent years due to their peculiar properties, such as big sizes, long lifetimes and strong interactions with fields and other Rydberg atoms. Rydberg atoms are very sensitive to external fields due to their large polarizabilities scaling as n7.These make Rydberg atoms an ideal candidate for the quantum information, the many-body interaction, etc.In this work, we investigate the Rydberg atoms using electromagneticlly induced transparency (EIT) in a ladder three-level system. The EIT is a quantum interference effect between two excitation path-ways driven by two laser fields. The main idea is performed in a room temperature cesium vapor cell, where the probe laser frequency is modulated. The ground state (6P1/2), excited state (6P3/2), and Rydberg state (nS1/2) constitute a Rydberg three-level system, in which the probe laser is fixed to the 6S1/2 (F = 4)6P3/2 (F = 5) transition by saturated absorption spectrum technique, whereas the coupling laser is scanned across the 6P3/249S1/2 transition. We detect the demodulated EIT signal with the lock-in amplifier (SR830). The modulated EIT signal shows a two-peak structure. The measured spacing between two peaks increases with the frequency detuning, caused by the modulation amplitude, and half the spacing between the peak-to-peak is nearly 1.67 times the modulation amplitude of the probe laser; the measured result shows that the splitting is independent of the modulation frequency. The experimental results are in agreement with the theoretical calculations. The results in our work can be used for real-time monitoring of the laser-line profiles and the fluctuation of laser frequency.
      通信作者: 赵建明, zhaojm@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB921603)、国家自然科学基金(批准号:11274209,61475090,61378013,61378039)和山西省留学基金(批准号:2014-009)资助的课题.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 11274209, 61475090, 61378013, 61378039), and the Shanxi Provincial Foundation for Studying Abroad, China (Grant No. 2014-009).
    [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [3]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [4]

    Lee H, Fleischhauer M, Scully M O 1998 Phys. Rev. A 58 2587

    [5]

    Wilk T, Getan A, Evellin C, Wolters J, Miroshnychenko Y Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502

    [6]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [7]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [8]

    Cubel Liebisch T, Reinhard A, Berman P R, Raithel G 2005 Phys. Rev. Lett. 95 253002

    [9]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [10]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890

    [11]

    Dudin Y O, Kuzmich A 2012 Science 336 887889

    [12]

    Peyronel T, Fisrtenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 11361

    [13]

    Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [14]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [15]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

  • [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [3]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [4]

    Lee H, Fleischhauer M, Scully M O 1998 Phys. Rev. A 58 2587

    [5]

    Wilk T, Getan A, Evellin C, Wolters J, Miroshnychenko Y Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502

    [6]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [7]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [8]

    Cubel Liebisch T, Reinhard A, Berman P R, Raithel G 2005 Phys. Rev. Lett. 95 253002

    [9]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [10]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890

    [11]

    Dudin Y O, Kuzmich A 2012 Science 336 887889

    [12]

    Peyronel T, Fisrtenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 11361

    [13]

    Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [14]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [15]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

  • [1] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱. 物理学报, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [2] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220950
    [3] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [4] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211458
    [5] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [6] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [7] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [8] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [9] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [10] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅. 物理学报, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [11] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [12] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [13] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [14] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [15] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [16] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [17] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [18] 王利强, 李永放, 曹冬梅, 毕冬艳, 张崇俊, 成延春. V型原子系统中相干布居俘获的相干相位调制研究 . 物理学报, 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  3626
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-14
  • 修回日期:  2016-02-23
  • 刊出日期:  2016-05-05

调制激光场中Rydberg原子的电磁感应透明

  • 1. 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 太原 030006
  • 通信作者: 赵建明, zhaojm@sxu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2012CB921603)、国家自然科学基金(批准号:11274209,61475090,61378013,61378039)和山西省留学基金(批准号:2014-009)资助的课题.

摘要: 本文主要研究了调制探测激光场中铯Rydberg 原子阶梯型三能级系统的电磁感应透明(EIT) 效应. 铯原子基态6S1/2, 第一激发态6P3/2 和Rydberg 态形成阶梯型三能级系统, 探测光作用于6S1/2 (F = 4)6P3/2(F' = 5) 的跃迁, 耦合光在Rydberg 跃迁线6P3/249S1/2 附近扫描, 形成Rydberg 原子EIT. 当对探测光频率施加一个几kHz 的调制时, 调制解调后的EIT 信号分裂为两个峰, 双峰间距与调制频率无关,而与调制幅度导致的失谐量大小(频率调制幅度) 成正比, 双峰间隔的一半等于探测光频率调制幅度的p/c = 1.67 倍. 实验结果与理论计算相一致. 本文的研究结果可应用于激光线型和频率抖动的实时监测.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回