搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维非线性声波传播特性

张世功 吴先梅 张碧星 安志武

引用本文:
Citation:

一维非线性声波传播特性

张世功, 吴先梅, 张碧星, 安志武

Propagation properties of one-dimensional nonlinear acoustic waves

Zhang Shi-Gong, Wu Xian-Mei, Zhang Bi-Xing, An Zhi-Wu
PDF
导出引用
  • 针对一维非线性声波的传播问题进行了有限元仿真和实验研究. 首先推导了一维非线性声波方程的有限元形式, 含有高阶矩阵的非线性项导致声波具有波形畸变、谐波滋生、基频信号能量向高次谐波传递等非线性特性. 编制有限元程序对一维非线性声波进行了计算并对仿真得到的畸变非线性声波信号进行处理, 分析其传播性质和物理意义. 为验证有限元计算结果, 开展了水中的非线性声波传播的实验研究, 得到了不同输入信号幅度激励下和不同传播距离的畸变非线性声波信号. 然后对基波和二次谐波的传播性质进行详细讨论, 分析了二次谐波幅度与传播距离和输入信号幅度的变化关系及其意义, 拟合出二次谐波幅度随传播距离变化的方程并阐述了拟合方程的物理意义. 结果表明, 数值仿真信号及其频谱均与实验结果有较好的一致性, 证实计算方法和结果的正确性, 并提出了具有一定物理意义的二次谐波随传播距离变化的简单数学关系. 最后还对固体中的非线性声波传播性质进行了初步探讨. 本研究工作可为流体介质中的非线性声传播问题提供理论和实验依据.
    The propagations of one-dimensional nonlinear acoustical waves are studied numerically and experimentally in this paper. The finite element method (FEM) is used to simulate the propagations of nonlinear acoustic waves. The FEM equation of one-dimensional nonlinear acoustic wave is derived according to the theory of nonlinear acoustics. A three-dimensional matrix appearing in the nonlinear FEM equation represents the nonlinear part of the nonlinear acoustic equation and indicates the complex propagation characteristics of nonlinear acoustic waves. However, there is no corresponding matrix in the linear FEM equation. The matrix correlates with the nonlinear properties of propagating waves such as wave distortion, high order harmonic wave generation and transformation of energy from basic frequency to high order harmonic frequency, etc. Then, an FEM program is coded to compute the propagations of the one-dimensional nonlinear acoustic waves. The results show that the nonlinear acoustic waves are distorted obviously during propagation. After fast Fourier transform processing the original wave signal, the basic frequency signals and high order harmonic signals both appear in the frequency-region signals. To prove the correctness of the FEM results, nonlinear acoustic experiments in water are carried out under different conditions. In the first experiment, the distance between the transmitting and receiving transducers is kept unchanged, but the transmitting transducer is excited with different energies. So with propagation distance fixed, the influences of different exciting energies on the nonlinear properties of acoustic waves are obtained from this experiment. In the second experiment, with the exciting energy fixed, the influences of different propagation distances on the nonlinear properties of acoustic waves are obtained by changing the distance between the transmitting and receiving transducers. Then the numerical results and the experimental results are compared and analyzed carefully. The result shows that the waveforms and the spectra of simulated nonlinear waves are in good agreement with those of experimental signals. These results prove the correctness of the proposed numerical method. It is also noticed that the propagation properties of basic frequency wave and the second order harmonic waves are different. The amplitude of basic frequency wave decreases gradually, but the amplitude of second order harmonic wave first increases and then decreases after propagating some distance. The amplitude of the second harmonic wave changes with propagation distance and energy of the input source amplitude. The relationship between the amplitude of second harmonic wave and the propagation distance is numerically fitted. We find a fitting equation of the relation between high order harmonic acoustic wave and propagation distance, which also brings clear physical meaning for the high order harmonic waves. Finally, the properties of nonlinear acoustic wave propagation in solid are preliminarily discussed. This study provides theoretical and experimental evidence for the nonlinear acoustic wave traveling in liquid.
      通信作者: 吴先梅, wuxm@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11274337,11474308)资助的课题.
      Corresponding author: Wu Xian-Mei, wuxm@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274337, 11474308).
    [1]

    Enflo B O, Hedberg C M 2004 Theory of Nonlinear Acoustics in Fluids (New York: Kluwer Academic Publishers) pp53-112

    [2]

    Rosing T D 2007 Springer Handbook of Acoustics (New York: Springer Science Business Media) p260

    [3]

    Beyer R T 1969 Physical Ultrasonics (New York: Academic Press) pp202-240

    [4]

    Blackstock D T 1965 J. Acoust. Soc. Am. 39 1019

    [5]

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) pp57-72 (in Chinese) [钱祖文 2009 非线性声学 (北京: 科学出版社) 第57-72页]

    [6]

    Qian Z W 2014 Chin. Phys. B 23 322

    [7]

    Goldberg Z A 1961 Sov. Phys. Acoust. 6 306

    [8]

    Zheng Y P, Maev R G, Solodov I Y 1999 Can. J. Phys. 77 927

    [9]

    Zienkiewicz O C, Morgan K (translated by Tao Z Z) 1989 Finite Elements and Approximation Method (Beijing: China Communications Press) p56 (in Chinese) [辛克维奇oc, 摩根k著 (陶振宗译) 1989有限元与近似法 (北京:人民交通出版社) 第56页]

    [10]

    Wang M C, Shao M 1999 Principle and Numerical Method of Finite Element (Beijing: Tsinghua University Press) p449 (in Chinese) [王勖成, 邵敏 1999 有限单元法基本原理和数值方法 (北京: 清华大学出版社) 第449页]

    [11]

    Kim J Y, Jacobs L J, Qu J M 2006 J. Acoust. Soc. Am. 120 1266

    [12]

    Liu X, Li J, Gong X, Zhu Z, Zhang D 2007 Physica D 228 172

    [13]

    Yost W T, Cantrell J H, Breazeale M A 1981 J. Appl. Phys. 52 126

    [14]

    Shui G, Wang Y, Qu J, Kim J Y, Jacobs L J 2010 Chin. J. Acoust. 29 107

  • [1]

    Enflo B O, Hedberg C M 2004 Theory of Nonlinear Acoustics in Fluids (New York: Kluwer Academic Publishers) pp53-112

    [2]

    Rosing T D 2007 Springer Handbook of Acoustics (New York: Springer Science Business Media) p260

    [3]

    Beyer R T 1969 Physical Ultrasonics (New York: Academic Press) pp202-240

    [4]

    Blackstock D T 1965 J. Acoust. Soc. Am. 39 1019

    [5]

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) pp57-72 (in Chinese) [钱祖文 2009 非线性声学 (北京: 科学出版社) 第57-72页]

    [6]

    Qian Z W 2014 Chin. Phys. B 23 322

    [7]

    Goldberg Z A 1961 Sov. Phys. Acoust. 6 306

    [8]

    Zheng Y P, Maev R G, Solodov I Y 1999 Can. J. Phys. 77 927

    [9]

    Zienkiewicz O C, Morgan K (translated by Tao Z Z) 1989 Finite Elements and Approximation Method (Beijing: China Communications Press) p56 (in Chinese) [辛克维奇oc, 摩根k著 (陶振宗译) 1989有限元与近似法 (北京:人民交通出版社) 第56页]

    [10]

    Wang M C, Shao M 1999 Principle and Numerical Method of Finite Element (Beijing: Tsinghua University Press) p449 (in Chinese) [王勖成, 邵敏 1999 有限单元法基本原理和数值方法 (北京: 清华大学出版社) 第449页]

    [11]

    Kim J Y, Jacobs L J, Qu J M 2006 J. Acoust. Soc. Am. 120 1266

    [12]

    Liu X, Li J, Gong X, Zhu Z, Zhang D 2007 Physica D 228 172

    [13]

    Yost W T, Cantrell J H, Breazeale M A 1981 J. Appl. Phys. 52 126

    [14]

    Shui G, Wang Y, Qu J, Kim J Y, Jacobs L J 2010 Chin. J. Acoust. 29 107

  • [1] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [2] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220575
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220606
    [5] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211381
    [6] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [7] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [8] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计. 物理学报, 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [9] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [10] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [11] 赵寰宇, 何存富, 吴斌, 汪越胜. 二维正方晶格多点缺陷声子晶体实验研究. 物理学报, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [12] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [13] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [14] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [15] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [16] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, 2005, 54(8): 3675-3679. doi: 10.7498/aps.54.3675
    [17] 薛洪惠, 刘晓宙, 龚秀芬, 章 东. 聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究. 物理学报, 2005, 54(11): 5233-5238. doi: 10.7498/aps.54.5233
    [18] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
    [19] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [20] 倪培根, 马博琴, 程丙英, 张道中. 二维LiNbO3非线性光子晶体. 物理学报, 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
计量
  • 文章访问数:  3875
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-01
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-05-05

一维非线性声波传播特性

  • 1. 中国科学院声学研究所, 声场声信息国家重点实验室, 北京 100190;
  • 2. 中国科学院声学研究所东海研究站, 上海 200032
  • 通信作者: 吴先梅, wuxm@mail.ioa.ac.cn
    基金项目: 国家自然科学基金(批准号:11274337,11474308)资助的课题.

摘要: 针对一维非线性声波的传播问题进行了有限元仿真和实验研究. 首先推导了一维非线性声波方程的有限元形式, 含有高阶矩阵的非线性项导致声波具有波形畸变、谐波滋生、基频信号能量向高次谐波传递等非线性特性. 编制有限元程序对一维非线性声波进行了计算并对仿真得到的畸变非线性声波信号进行处理, 分析其传播性质和物理意义. 为验证有限元计算结果, 开展了水中的非线性声波传播的实验研究, 得到了不同输入信号幅度激励下和不同传播距离的畸变非线性声波信号. 然后对基波和二次谐波的传播性质进行详细讨论, 分析了二次谐波幅度与传播距离和输入信号幅度的变化关系及其意义, 拟合出二次谐波幅度随传播距离变化的方程并阐述了拟合方程的物理意义. 结果表明, 数值仿真信号及其频谱均与实验结果有较好的一致性, 证实计算方法和结果的正确性, 并提出了具有一定物理意义的二次谐波随传播距离变化的简单数学关系. 最后还对固体中的非线性声波传播性质进行了初步探讨. 本研究工作可为流体介质中的非线性声传播问题提供理论和实验依据.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回