搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚微米局域空心光束的产生及其在单原子囚禁与冷却中的应用理论研究

任瑞敏 尹亚玲 王志章 郭超修 印建平

引用本文:
Citation:

亚微米局域空心光束的产生及其在单原子囚禁与冷却中的应用理论研究

任瑞敏, 尹亚玲, 王志章, 郭超修, 印建平

Theoretical research on the generation of a submicron localized hollow beam and its applications in the trapping and cooling of a single atom

Ren Rui-Min, Yin Ya-Ling, Wang Zhi-Zhang, Guo Chao-Xiu, Yin Jian-Ping
PDF
导出引用
  • 提出了一种采用单模光纤、环形二元相位板和微透镜组成的光束整形系统产生亚微米局域空心光束的方案. 根据瑞利-索莫菲衍射积分公式, 数值计算了微透镜焦平面附近的场分布, 详细研究了空心光束的暗斑尺寸与单模光纤模场半径和微透镜焦距的关系. 数值计算结果表明: 在微透镜焦平面附近光场分布近似对称, 在焦点处场强近似为零, 周围场强逐渐增大, 形成半径约为0.4 m的三维封闭的球形空心光场区域, 即亚微米局域空心光束. 当局域空心光束为蓝失谐时, 光场中的原子将被囚禁在光场最弱处. 若加上抽运光, 原子将受到蓝失谐局域空心光束与抽运光共同激发的强度梯度Sisyphus冷却. 本文利用该方案产生的亚微米局域空心光束构建单原子的囚禁与冷却器件, 并以单个87Rb原子为例, 利用Mont-Carlo方法研究亚微米局域空心光束中单原子囚禁与强度梯度冷却的动力学过程, 结果表明利用该器件可以获得温度在5.8 K量级的超冷单原子.
    In order to generate a submicron localized hollow laser beam and realize the more efficient laser cooling and trapping of a single atom, a simple and promising scheme with using the system of a single mode fiber a circle binary phase plate and a microlens is proposed in this paper. From Rayleigh-Sommerfeld diffraction theory, the intensity distribution of the generated localized hollow laser beam near the focal plane and its propagating properties in free space are calculated. Also, the dependences of the dark-spot size of the localized hollow beam on the mode radius of single mode fiber and the focal length of the mocrolens are studied. The calculated results show that the intensity distribution of the localized hollow beam presents approximately symmstrical distribution near the focal plane. In the center of the focal plane, the light intensity is 0 and increases gradually around it. So a closed spherical light field (i.e., localized hollow laser beam) with a radius of 0.4 m is generated. The calculated results also show that the dark-spot size of the localized hollow laser beam decreases with the increasing of the microlens focal length and the decreasing of the single mode fiber mode radius. So proper parameters of this optical system can be chosen to generate localized hollow laser beams with different sizes for various applications. When the localized hollow laser beam is blue detuned, atoms will be trapped in the minimum light filed. If a repumping laser beam is applied, the trapped atoms will be also cooled by the intensity-gradient Sisyphus cooling. In this paper, we build a device for trapping and cooling a single atom by using the generated blue detuned submicron localized hollow laser beam. We study the dynamical process of intensity-gradient cooling of a single 87Rb atom trapped in the localized hollow beam by Monte-Carlo method. Our study shows that a single 87Rb atom with a temperature of 120 K (the corresponding momentum is 30ħk) from a magneto-optical trap (MOT) can be directly cooled to a final tempreture of ~ 5.8 K (the corresponding momentum is ~ 6.6ħk). So an ultracold single atom is generated and trapped in our submicro localized hollow beam. This device for obtaining ultralcold single atom can be widely uesd in the regions of the optical physics, the atom and molecule optics, such as the detecting of the fundamental physical parameters, realizing the quantum computer, studying the cold collision of singe atoms, and realizing the single atom laser.
      通信作者: 尹亚玲, ylyin@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金面上项目(批准号: 11274114)资助的课题.
      Corresponding author: Yin Ya-Ling, ylyin@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274114).
    [1]

    Yin J P, Gao W J, Zhu Y F {2003 Prog. Opt. 44 119

    [2]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [3]

    Ito H, Sakaki K, Jhe W, Ohstu M 1997 Phys. Rev. A 56 712

    [4]

    Power W L, Allen L, Babiler M 1995 Phys. Rev. A 52 479

    [5]

    Lee H S, Stewart B W, Choi K, Fenichel H 1994 Phys. Rev. A 49 4922

    [6]

    Hechenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221

    [7]

    Wang X, Littman M G 1993 Opt. Lett. 18 767

    [8]

    Yin J P, Noh H R, Lee K L, Wang Y Z, Jhe W 1997 Opt. Commun. 138 287

    [9]

    Mamaev A V, Saffman M, Zozulya A 1996 Phys. Rev. Lett. 77 4544

    [10]

    Du X L, Yin Y L, Zheng G J, Guo C X, Sun Y, Zhou Z N, Bai S J, Wang H L, Xia Y, Yin J P 2014 Opt. Commun. 322 179

    [11]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [12]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese) [周琦, 陆俊发, 印建平 2015 物理学报 64 053701]

    [13]

    Ma L, Wu F T {2011 Infrared and Laser Engineering 40 1988 (in Chinese) [马亮, 吴锋铁 2011 红外与激光工程 40 1988]

    [14]

    Du T J, Wu F T, W T, Li P, Li D, He X {2013 Acta Opt. Sin. 33 0908001 (in Chinese) [杜团结, 吴锋铁, 王涛, 李攀, 李冬, 何西 2013 光学学报 33 0908001]

    [15]

    Ozeri R, Khaykovich L, Davidson N 1999 Phys. Rev. A 59 1750

    [16]

    Arlt J, Padgent M J 2000 Opt. Lett. 25 191

    [17]

    Tai P T, Hsieh W F, Chen C H 2004 Opt. Express 12 5827

    [18]

    Zhao Y, Zhan Q, Zhang Y, Li Y P 2005 Opt. Lett. 30 848

    [19]

    Cheng Y G, Tong J M, Zhu J P, Liu J B, Hu S, He Y 2015 Opt. Laser Eng. 77 18

    [20]

    Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447

    [21]

    Tey M K, Maslennikov G, Liew T C H, Aljunid S A, Huber F, Chng B, Chen Z, Scarani V, Kurtsiefer C 2009 New J. Phys. 11 043011

    [22]

    Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H, Rempe G 2004 Nature 428 50

    [23]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2015 Chin. Phys. Lett. 32 104210

    [24]

    Boozer A D, Boca A, Miller R, Northup T E, Kimble H J 2006 Phys. Rev. Lett. 97 083602

    [25]

    Koch M, Sames C, Kubanek A, Apel M, Balbach M, Ourjoumtsev A, Pinkse P W H, Rempe G 2010 Phys. Rev. Lett. 105 173003

    [26]

    Yin Y L, Xia Y, Ren R M, Du X L, Yin J P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 195001

    [27]

    Manning A G, Khakimov R, Dall R G, Truscott A G 2014 Phys. Rev. Lett. 113 130403

    [28]

    Ni Y, Yin J P 2006 Acta Phys. Sin. 55 130 (in Chinese) [倪贇, 印建平 2006 物理学报 55 130]

    [29]

    Oikawa M, Lga A, Sanada T {1981 Jap. J. Appl. Phys. 48 49

    [30]

    Borroui N F, Morse D L, Beuman R H, et. al 1985 Appl. Opt. 24 2520

    [31]

    Ren Z B, Lu Z W {2005 J. Laser Appl. 16 150 (in Chinese) [任智斌, 卢振武 2005 电子 16 150]

    [32]

    Fu Y, Ngoi B K A 2001 Opt. Eng. 40 511

    [33]

    Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164

    [34]

    He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404

    [35]

    Wang Z L, Dai M, Yin J P 2005 Opt. Exp. 13 8406

    [36]

    Wu F T, Cheng Z M, Wang T, Pu J X {2013 Acta Opt. Sin. 33 0326001 (in Chinese) [吴逢铁, 程治明, 王涛, 蒲继雄 2013 光学学报 33 0326001]

    [37]

    Mu R W, Lu S, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [38]

    Nelson K D, Li X, Weiss D S 2007 Nature Phys. 3 556

  • [1]

    Yin J P, Gao W J, Zhu Y F {2003 Prog. Opt. 44 119

    [2]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [3]

    Ito H, Sakaki K, Jhe W, Ohstu M 1997 Phys. Rev. A 56 712

    [4]

    Power W L, Allen L, Babiler M 1995 Phys. Rev. A 52 479

    [5]

    Lee H S, Stewart B W, Choi K, Fenichel H 1994 Phys. Rev. A 49 4922

    [6]

    Hechenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221

    [7]

    Wang X, Littman M G 1993 Opt. Lett. 18 767

    [8]

    Yin J P, Noh H R, Lee K L, Wang Y Z, Jhe W 1997 Opt. Commun. 138 287

    [9]

    Mamaev A V, Saffman M, Zozulya A 1996 Phys. Rev. Lett. 77 4544

    [10]

    Du X L, Yin Y L, Zheng G J, Guo C X, Sun Y, Zhou Z N, Bai S J, Wang H L, Xia Y, Yin J P 2014 Opt. Commun. 322 179

    [11]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [12]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese) [周琦, 陆俊发, 印建平 2015 物理学报 64 053701]

    [13]

    Ma L, Wu F T {2011 Infrared and Laser Engineering 40 1988 (in Chinese) [马亮, 吴锋铁 2011 红外与激光工程 40 1988]

    [14]

    Du T J, Wu F T, W T, Li P, Li D, He X {2013 Acta Opt. Sin. 33 0908001 (in Chinese) [杜团结, 吴锋铁, 王涛, 李攀, 李冬, 何西 2013 光学学报 33 0908001]

    [15]

    Ozeri R, Khaykovich L, Davidson N 1999 Phys. Rev. A 59 1750

    [16]

    Arlt J, Padgent M J 2000 Opt. Lett. 25 191

    [17]

    Tai P T, Hsieh W F, Chen C H 2004 Opt. Express 12 5827

    [18]

    Zhao Y, Zhan Q, Zhang Y, Li Y P 2005 Opt. Lett. 30 848

    [19]

    Cheng Y G, Tong J M, Zhu J P, Liu J B, Hu S, He Y 2015 Opt. Laser Eng. 77 18

    [20]

    Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447

    [21]

    Tey M K, Maslennikov G, Liew T C H, Aljunid S A, Huber F, Chng B, Chen Z, Scarani V, Kurtsiefer C 2009 New J. Phys. 11 043011

    [22]

    Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H, Rempe G 2004 Nature 428 50

    [23]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2015 Chin. Phys. Lett. 32 104210

    [24]

    Boozer A D, Boca A, Miller R, Northup T E, Kimble H J 2006 Phys. Rev. Lett. 97 083602

    [25]

    Koch M, Sames C, Kubanek A, Apel M, Balbach M, Ourjoumtsev A, Pinkse P W H, Rempe G 2010 Phys. Rev. Lett. 105 173003

    [26]

    Yin Y L, Xia Y, Ren R M, Du X L, Yin J P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 195001

    [27]

    Manning A G, Khakimov R, Dall R G, Truscott A G 2014 Phys. Rev. Lett. 113 130403

    [28]

    Ni Y, Yin J P 2006 Acta Phys. Sin. 55 130 (in Chinese) [倪贇, 印建平 2006 物理学报 55 130]

    [29]

    Oikawa M, Lga A, Sanada T {1981 Jap. J. Appl. Phys. 48 49

    [30]

    Borroui N F, Morse D L, Beuman R H, et. al 1985 Appl. Opt. 24 2520

    [31]

    Ren Z B, Lu Z W {2005 J. Laser Appl. 16 150 (in Chinese) [任智斌, 卢振武 2005 电子 16 150]

    [32]

    Fu Y, Ngoi B K A 2001 Opt. Eng. 40 511

    [33]

    Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164

    [34]

    He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404

    [35]

    Wang Z L, Dai M, Yin J P 2005 Opt. Exp. 13 8406

    [36]

    Wu F T, Cheng Z M, Wang T, Pu J X {2013 Acta Opt. Sin. 33 0326001 (in Chinese) [吴逢铁, 程治明, 王涛, 蒲继雄 2013 光学学报 33 0326001]

    [37]

    Mu R W, Lu S, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [38]

    Nelson K D, Li X, Weiss D S 2007 Nature Phys. 3 556

  • [1] 朱清智, 吴逢铁, 胡润, 冯聪. 空心光束尺寸的精确调控. 物理学报, 2016, 65(18): 184101. doi: 10.7498/aps.65.184101
    [2] 刘贝, 靳刚, 何军, 王军民. 基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源. 物理学报, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [3] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [4] 周琦, 陆俊发, 印建平. 可控双空心光束的理论方案及实验研究. 物理学报, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [5] 朱开成, 唐慧琴, 郑小娟, 唐英. 广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生. 物理学报, 2014, 63(10): 104210. doi: 10.7498/aps.63.104210
    [6] 刁文婷, 何军, 刘贝, 王杰英, 王军民. 利用蓝失谐激光诱导微型光学偶极阱中冷原子间的光助碰撞提高单原子制备概率. 物理学报, 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [7] 王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民. 磁光阱中单原子荧光信号的优化及单原子的高效装载. 物理学报, 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [8] 何西, 杜团结, 吴逢铁. 新型发光二极管透镜产生局域空心光束. 物理学报, 2014, 63(7): 074201. doi: 10.7498/aps.63.074201
    [9] 杜团结, 王涛, 吴逢铁. 轴棱锥对无衍射光束的线聚焦特性. 物理学报, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [10] 王成, 许鹏, 何晓东, 王谨, 詹明生. 单原子在两个远红失谐光偶极阱中的转移. 物理学报, 2012, 61(20): 203701. doi: 10.7498/aps.61.203701
    [11] 程治明, 吴逢铁, 张前安, 郑维涛. 自成像局域空心光束产生的新方法及粒子俘获. 物理学报, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [12] 张前安, 吴逢铁, 郑维涛. 轴棱锥-透镜系统产生局域空心光束中心亮斑的消除. 物理学报, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [13] 程治明, 吴逢铁, 方翔, 范丹丹, 朱健强. 圆顶轴棱锥产生多个局域空心光束. 物理学报, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [14] 张前安, 吴逢铁, 郑维涛, 马亮. 新型锥透镜产生局域空心光束. 物理学报, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [15] 卢文和, 吴逢铁, 马宝田. 环形障碍物-轴棱锥产生局域空心光束. 物理学报, 2010, 59(9): 6101-6105. doi: 10.7498/aps.59.6101
    [16] 马亮, 吴逢铁. 阶变折射率轴棱锥产生局域空心光束. 物理学报, 2010, 59(9): 6096-6100. doi: 10.7498/aps.59.6096
    [17] 王正岭, 曹国荣, 印建平. 采用消逝波干涉的二维表面微光阱阵列. 物理学报, 2008, 57(10): 6233-6239. doi: 10.7498/aps.57.6233
    [18] 印建平, 高伟建. 局域中空光束中原子的强度梯度冷却. 物理学报, 2004, 53(12): 4157-4162. doi: 10.7498/aps.53.4157
    [19] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [20] 印建平, 高伟建, 刘南春, 王义遒. 全光学冷却与囚禁133Cs原子玻色-爱因斯坦凝聚的可能性. 物理学报, 2001, 50(4): 660-666. doi: 10.7498/aps.50.660
计量
  • 文章访问数:  3249
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-08
  • 修回日期:  2016-02-16
  • 刊出日期:  2016-06-05

亚微米局域空心光束的产生及其在单原子囚禁与冷却中的应用理论研究

  • 1. 华东师范大学物理学系, 精密光谱科学与技术国家重点实验室, 上海 200062
  • 通信作者: 尹亚玲, ylyin@phy.ecnu.edu.cn
    基金项目: 国家自然科学基金面上项目(批准号: 11274114)资助的课题.

摘要: 提出了一种采用单模光纤、环形二元相位板和微透镜组成的光束整形系统产生亚微米局域空心光束的方案. 根据瑞利-索莫菲衍射积分公式, 数值计算了微透镜焦平面附近的场分布, 详细研究了空心光束的暗斑尺寸与单模光纤模场半径和微透镜焦距的关系. 数值计算结果表明: 在微透镜焦平面附近光场分布近似对称, 在焦点处场强近似为零, 周围场强逐渐增大, 形成半径约为0.4 m的三维封闭的球形空心光场区域, 即亚微米局域空心光束. 当局域空心光束为蓝失谐时, 光场中的原子将被囚禁在光场最弱处. 若加上抽运光, 原子将受到蓝失谐局域空心光束与抽运光共同激发的强度梯度Sisyphus冷却. 本文利用该方案产生的亚微米局域空心光束构建单原子的囚禁与冷却器件, 并以单个87Rb原子为例, 利用Mont-Carlo方法研究亚微米局域空心光束中单原子囚禁与强度梯度冷却的动力学过程, 结果表明利用该器件可以获得温度在5.8 K量级的超冷单原子.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回