搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双酚A在氧化石墨烯表面吸附的分子动力学模拟

林文强 徐斌 陈亮 周峰 陈均朗

引用本文:
Citation:

双酚A在氧化石墨烯表面吸附的分子动力学模拟

林文强, 徐斌, 陈亮, 周峰, 陈均朗

Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide

Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang
PDF
导出引用
  • 双酚A(bisphenol A, BPA)是一种内分泌干扰物, 会对机体多方面产生不良影响, 包括生殖系统、神经系统、胚胎发育等. 因此, 在水环境中如何检测和去除BPA显得尤为重要. 实验研究表明, 氧化石墨烯(graphene oxide, GO)对BPA具有优异的吸附去除性能, 但在分子层面的吸附机制尚不清楚. 分子动力学模拟, 能提供BPA在GO表面的动态吸附过程以及吸附构象等详细信息, 可以弥补实验的不足. 本文利用GROMACS分子动力学模拟软件, 系统模拟了BPA 在含GO的水溶液中的吸附过程, 并计算了吸附自由能. 结果显示: 所有的BPA均被吸附在GO 两侧, 通过分析BPA的吸附构象以及与GO的相互作用, 发现- 疏水作用对吸附起主导作用, 且显示出很好的稳定性, 而静电和氢键作用增加了GO的吸附能力. 通过自由能计算, BPA在GO表面的结合能达30 kJ/mol, 远大于水分子的5 kJ/mol. 这些结果进一步证实GO对BPA具有很强的吸附能力以及GO作为吸附剂在水溶液中去除BPA的可行性.
    The elimination of bisphenol A (BPA) from water solution is of great importance, since BPA can cause the functional abnormalities of human endocrine system. One feasible removal method is the adsorption by graphene oxide (GO). However, the interactions between BPA and GO at an atomic level are still unclear. In this study, molecular dynamics simulations are performed to investigate the adsorption of BPA on the GO surface. The results show that all BPA molecules are attached to both sides of GO. The adsorption conformations of BPA in the closest layer to GO surface mainly exhibit two patterns. One is that the benzene rings of BPA are parallel to the basal plane of GO to form - structures, and the other is the two hydroxyl groups of BPAs interacting with the oxygen-contained groups on GO to form hydrogen bonds. Exploration of the detailed interactions between BPA and GO indicates that the hydrophobic - stacking interaction is the dominant force in the adsorption of BPA on GO, while hydrogen bonding enhances the binding of BPA on GO surface. Eventually, potential of mean forces (PMF) of BPA and water molecules on GO are calculated by umbrella sampling. The binding energy of BPA on GO reaches 30 kJ/mol, six times as large as that of water on GO, which is only about 5 kJ/mol. Our simulations further confirm that GO owns strong adsorption capacity and GO can be used as sorbent to eliminate BPA in water solution.
      通信作者: 陈均朗, chenjunlang7955@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11574272)、浙江省自然科学基金(批准号: LY16A040014)和浙江农林大学科研发展基金(批准号: 2015FR022)资助的课题.
      Corresponding author: Chen Jun-Lang, chenjunlang7955@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574272), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY16A040014), and the Scientific Research and Developed Fund of Zhejiang A F University (Grant No. 2015FR022).
    [1]

    Staples C A, Dorn P B, Klecka G M, OBlook S T, Harris L R 1998 Chemosphere 36 2149

    [2]

    Staplesa C A, Dorn P B, Klecka G M, OBlock S T, Branson D R, Harris L R 2000 Chemosphere 40 521

    [3]

    Chang H S, Choo K H, Lee B, Choi S J 2009 J. Hazard Mater. 72 1

    [4]

    Kang J H, Kondo F, Katayama Y 2006 Toxicology 226 79

    [5]

    Deng H M, Liang C Y, Chen Y H 2009 Environ. Poll. Contrl. 31 70 (in Chinese) [邓红梅, 梁春营, 陈永亨 2009 环境污染与防治 31 70]

    [6]

    Deng M X, Wu D S, Zhan L 2001 J. Environ. Health 18 134 (in Chinese) [邓茂先, 吴德生, 詹立 2001 环境与健康杂志 18 134]

    [7]

    Yang D, Li D D, Liu S S, Yan Y Q 2008 Morden Preventive Medicine 35 3280 (in Chinese) [杨丹, 李丹丹, 刘姗姗, 严云勤 2008 现代预防医学 35 3280]

    [8]

    Chen L, Xu X H, Tian D 2009 Sci. China: Ser. C 39 1111 (in Chinese) [陈蕾, 徐晓虹, 田栋 2009 中国科学C辑: 生命科学 39 1111]

    [9]

    Chung C, Kim Y K, Shin D, Ryoo S R, Hong B H, Min D H 2013 Accounts Chem. Res. 46 2211

    [10]

    Mao H Y, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran A A, Mahmoudi M 2013 Chem. Rev. 113 3407

    [11]

    Wang Y, Li Z, Wang J, Li J, Lin Y 2011 Trends Biotechnol. 29 205

    [12]

    Lerf A, He H, Forster M, Klinowski J 1998 J. Phys. Chem. B 102 4477

    [13]

    Dreyer D R, Park S, Bielawski C W, Ruoff R S 2010 Chem. Soc. Rev. 39 228

    [14]

    Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S, Chhowalla M 2009 Nano Lett. 9 1058

    [15]

    Lu C H, Yang H H, Zhu C L, Chen X, Chen G N 2009 Angew. Chem. 121 4879

    [16]

    He S L, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H 2010 Adv. Funct. Mater. 20 453

    [17]

    Liu Z, Robinson J T, Sun X M, Dai H J 2008 J. Am. Chem. Soc. 130 10876

    [18]

    Sun X M, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H J 2008 Nano Res 1 203

    [19]

    Xu J, Wang L, Zhu Y F 2012 Langmuir 28 8418

    [20]

    Xu J, Zhu Y F 2013 Acta Phys. -Chim. Sin. 29 829

    [21]

    Zhang Y X, Cheng Y X, Chen N N, Zhou Y Y, Li B Y, Gu W, Shi X H, Xian Y Z 2014 J. Colloid Interf. Sci. 421 85

    [22]

    Cortes-Arriagada D, Sanhueza L, Santander-Nelli M 2013 J. Mol. Model. 19 3569

    [23]

    Berendsen H J C, van der Spoel D, Drunen R V 1995 Comput. Phys. Commun. 91 43

    [24]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [25]

    Schuttelkopf A W, van Aalten D M F 2004 Acta Cryst. D 60 1355

    [26]

    Becke A D 1988 Phys. Rev. A 38 3098

    [27]

    Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian 03, Revision B.02 Gaussian, Inc: Pittsburgh, PA

    [28]

    Shih C J, Lin S C, Sharma R, Strano M S, Blankschtein D 2012 Langmuir 28 235

    [29]

    Tu Y S, L M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P, Zhou R H 2013 Nat. Nanotech. 8 594

    [30]

    Zeng S W, Chen L, Wang Y, Chen J L 2015 J. Phys. D: Appl. Phys. 48 275402

    [31]

    Patra N, Wang B Y, Kral P 2009 Nano Lett. 9 3766

    [32]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Phys. Chem. 79 926

    [33]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101

    [34]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [35]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089

    [36]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463

    [37]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics 14 33

    [38]

    Hub J S, de Groot B L, van der Spoel D 2010 J. Chem. Theory Comput. 6 3713

  • [1]

    Staples C A, Dorn P B, Klecka G M, OBlook S T, Harris L R 1998 Chemosphere 36 2149

    [2]

    Staplesa C A, Dorn P B, Klecka G M, OBlock S T, Branson D R, Harris L R 2000 Chemosphere 40 521

    [3]

    Chang H S, Choo K H, Lee B, Choi S J 2009 J. Hazard Mater. 72 1

    [4]

    Kang J H, Kondo F, Katayama Y 2006 Toxicology 226 79

    [5]

    Deng H M, Liang C Y, Chen Y H 2009 Environ. Poll. Contrl. 31 70 (in Chinese) [邓红梅, 梁春营, 陈永亨 2009 环境污染与防治 31 70]

    [6]

    Deng M X, Wu D S, Zhan L 2001 J. Environ. Health 18 134 (in Chinese) [邓茂先, 吴德生, 詹立 2001 环境与健康杂志 18 134]

    [7]

    Yang D, Li D D, Liu S S, Yan Y Q 2008 Morden Preventive Medicine 35 3280 (in Chinese) [杨丹, 李丹丹, 刘姗姗, 严云勤 2008 现代预防医学 35 3280]

    [8]

    Chen L, Xu X H, Tian D 2009 Sci. China: Ser. C 39 1111 (in Chinese) [陈蕾, 徐晓虹, 田栋 2009 中国科学C辑: 生命科学 39 1111]

    [9]

    Chung C, Kim Y K, Shin D, Ryoo S R, Hong B H, Min D H 2013 Accounts Chem. Res. 46 2211

    [10]

    Mao H Y, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran A A, Mahmoudi M 2013 Chem. Rev. 113 3407

    [11]

    Wang Y, Li Z, Wang J, Li J, Lin Y 2011 Trends Biotechnol. 29 205

    [12]

    Lerf A, He H, Forster M, Klinowski J 1998 J. Phys. Chem. B 102 4477

    [13]

    Dreyer D R, Park S, Bielawski C W, Ruoff R S 2010 Chem. Soc. Rev. 39 228

    [14]

    Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S, Chhowalla M 2009 Nano Lett. 9 1058

    [15]

    Lu C H, Yang H H, Zhu C L, Chen X, Chen G N 2009 Angew. Chem. 121 4879

    [16]

    He S L, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H 2010 Adv. Funct. Mater. 20 453

    [17]

    Liu Z, Robinson J T, Sun X M, Dai H J 2008 J. Am. Chem. Soc. 130 10876

    [18]

    Sun X M, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H J 2008 Nano Res 1 203

    [19]

    Xu J, Wang L, Zhu Y F 2012 Langmuir 28 8418

    [20]

    Xu J, Zhu Y F 2013 Acta Phys. -Chim. Sin. 29 829

    [21]

    Zhang Y X, Cheng Y X, Chen N N, Zhou Y Y, Li B Y, Gu W, Shi X H, Xian Y Z 2014 J. Colloid Interf. Sci. 421 85

    [22]

    Cortes-Arriagada D, Sanhueza L, Santander-Nelli M 2013 J. Mol. Model. 19 3569

    [23]

    Berendsen H J C, van der Spoel D, Drunen R V 1995 Comput. Phys. Commun. 91 43

    [24]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [25]

    Schuttelkopf A W, van Aalten D M F 2004 Acta Cryst. D 60 1355

    [26]

    Becke A D 1988 Phys. Rev. A 38 3098

    [27]

    Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian 03, Revision B.02 Gaussian, Inc: Pittsburgh, PA

    [28]

    Shih C J, Lin S C, Sharma R, Strano M S, Blankschtein D 2012 Langmuir 28 235

    [29]

    Tu Y S, L M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P, Zhou R H 2013 Nat. Nanotech. 8 594

    [30]

    Zeng S W, Chen L, Wang Y, Chen J L 2015 J. Phys. D: Appl. Phys. 48 275402

    [31]

    Patra N, Wang B Y, Kral P 2009 Nano Lett. 9 3766

    [32]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Phys. Chem. 79 926

    [33]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101

    [34]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [35]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089

    [36]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463

    [37]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics 14 33

    [38]

    Hub J S, de Groot B L, van der Spoel D 2010 J. Chem. Theory Comput. 6 3713

  • [1] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] 赵明慧, 刘忠军, 姬帅, 刘晨, 敖庆波. 超临界氮气在单壁碳纳米管内吸附行为的GCMC模拟研究. 物理学报, 2022, 71(22): 220201. doi: 10.7498/aps.71.20220765
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟. 物理学报, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [7] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [8] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] 李洪, 艾倩雯, 汪鹏君, 高和蓓, 崔毅, 罗孟波. 外力驱动作用下高分子链在表面吸附性质的计算机模拟. 物理学报, 2018, 67(16): 168201. doi: 10.7498/aps.67.20180468
    [10] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [11] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [13] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [14] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [15] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO . 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [16] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [17] 刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科. 甲烷在不同分子筛中吸附的理论对比研究. 物理学报, 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [18] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究. 物理学报, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [19] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [20] 张现仁, 沈志刚, 陈建峰, 汪文川. 乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟. 物理学报, 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
计量
  • 文章访问数:  5027
  • PDF下载量:  644
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-12
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-07-05

双酚A在氧化石墨烯表面吸附的分子动力学模拟

  • 1. 浙江农林大学理学院, 临安 311300;
  • 2. 浙江农林大学信息工程学院, 临安 311300;
  • 3. 浙江省辐射环境监测站, 杭州 310012
  • 通信作者: 陈均朗, chenjunlang7955@sina.com
    基金项目: 国家自然科学基金(批准号: 11574272)、浙江省自然科学基金(批准号: LY16A040014)和浙江农林大学科研发展基金(批准号: 2015FR022)资助的课题.

摘要: 双酚A(bisphenol A, BPA)是一种内分泌干扰物, 会对机体多方面产生不良影响, 包括生殖系统、神经系统、胚胎发育等. 因此, 在水环境中如何检测和去除BPA显得尤为重要. 实验研究表明, 氧化石墨烯(graphene oxide, GO)对BPA具有优异的吸附去除性能, 但在分子层面的吸附机制尚不清楚. 分子动力学模拟, 能提供BPA在GO表面的动态吸附过程以及吸附构象等详细信息, 可以弥补实验的不足. 本文利用GROMACS分子动力学模拟软件, 系统模拟了BPA 在含GO的水溶液中的吸附过程, 并计算了吸附自由能. 结果显示: 所有的BPA均被吸附在GO 两侧, 通过分析BPA的吸附构象以及与GO的相互作用, 发现- 疏水作用对吸附起主导作用, 且显示出很好的稳定性, 而静电和氢键作用增加了GO的吸附能力. 通过自由能计算, BPA在GO表面的结合能达30 kJ/mol, 远大于水分子的5 kJ/mol. 这些结果进一步证实GO对BPA具有很强的吸附能力以及GO作为吸附剂在水溶液中去除BPA的可行性.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回