搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶胶-凝胶-蒸镀法制备高性能FTO薄膜

史晓慧 许珂敬

引用本文:
Citation:

溶胶-凝胶-蒸镀法制备高性能FTO薄膜

史晓慧, 许珂敬

The preparation of high-performance FTO thin film by Sol-Gel-evaporation method

Shi Xiao-Hui, Xu Ke-Jing
PDF
导出引用
  • 以SnCl45 H2O为锡源, SnF2为氟源, 采用溶胶-凝胶-蒸镀法制备F掺杂的SnO2透明导电氧化物薄膜(FTO薄膜). 通过正交实验研究确定最佳反应温度、反应时间和蒸镀温度等制备条件. 主要研究元素F的掺杂和膜的结构对FTO薄膜性能的影响, 并采用IR, DTA-TG, XRD, TEM和SEM等进行样品的性能表征. 研究结果表明, 当反应温度50 ℃、反应时间5 h、烧结(蒸镀)温度600 ℃、 镀膜次数1次、 而F/Sn=14 mol%时, FTO薄膜性能指数TC最大, 综合光电性能最优, 表面电阻为14.7 cm-1, 平均透光率为74.4%. FTO薄膜内颗粒的平均粒径为20 nm, 呈四方金红石型结构, F的掺入替代了部分的O, 形成了SnO2-xFx晶体结构. F的掺杂量是影响FTO薄膜的主要因素, F过多或过少均不利于SnO2-xFx晶体的生长; FTO薄膜的结构、颗粒形状、大小等三维信息也是影响薄膜性能的因素, 主要表现为分形维数越小, 薄膜表面越平整, 势垒越低, 导电性能越好.
    The purpose of this work is to prepare the high-performance transparent conductive thin films of fluorine-doped tin oxide (FTO) by using a simple technological process. The FTO thin films are formed in the period of calcination process combined with the advantages of sol-gel method and chemical vapor deposition method, which not only avoids the shortcomings of film cracking in sol-gel coating process, but also reduces the cumbersome traditional dip-coating method and spin-coating method on glass substrates, largely simplifying process and cutting costs. The FTO thin films are deposited onto glass substrates by the sol-gel-evaporation method with SnCl45H2O as a tin source, and SnF2 as a fluorine source. The effects of F-doping content and the structure of the film on the properties of FTO film are mainly studied. The prepared films are characterized by IR, DTA-TG, XRD, TEM, SEM, etc. The results show that the maximum performance index (TC) of the FTO film, the lowest surface resistance of 14.7 cm-1, and the average light transmittance of 74.4% when F/Sn=14 mol% are achieved under the conditions of the reaction temperature of 50 ℃, the reaction time of 5 h, sintering or evaporation temperature of 600 ℃ for 2 h. It is indicated that part of O is replaced by F, and SnO2-xFx crystal structure is formed. It reveals that the crystal structure is polycrystalline and has a preferential orientation along the (110) direction and the spacing between the lattice fringes is about 0.33 nm in the FTO film. And the particles in the FTO film present a tetragonal rutile phase with an average size of 20 nm and a film thickness of 1.22 m. Fractal dimension of image by dealing with SEM image of FTO film shows that the surface resistance decreases with the decreasing of fractal dimension, which in fact critically demonstrates the lower barrier. The lower the barrier, the smoother the surface of the thin films is. So the fluorine concentration is the main factor affecting the properties of FTO thin film. Too much or too less fluorine is not conducive to the growths of SnO2-xFx crystals. And then the three-dimensional information such as structure, particle shape and size of the FTO thin film is also the factor influencing the FTO film properties. The analysis of SEM shows that the surface morphology of the thin film is in the pyramid-shaped structure, which is beneficial to improving the utilization of photons, and well used in the optoelectronic devices.
      通信作者: 许珂敬, xukj@sdut.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2012EM045)资助的课题.
      Corresponding author: Xu Ke-Jing, xukj@sdut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012EM045).
    [1]

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Beijing: Electronic Industry Press) pp65-127 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(北京:电子工业出版社) 第65-127页]

    [2]

    Turgut G 2015 Thin Solid Films 594 56

    [3]

    Huang L J, Ren N F, Li B J, Zhou M 2015 Acta Phys. Sin. 64 034211 (in Chinese) [黄立静, 任乃飞, 李保家, 周明 2015 物理学报 64 034211]

    [4]

    Turgut G, Keskenler E F, Aydin S, Tatar D, Sonmez E, Dogan S, Duzgun B 2014 Rare Metals 33 433

    [5]

    Mrabet C, Boukhachem A, Amlouk M, Manoubi T 2016 J. Alloys Compd. 666 392

    [6]

    An H R, Kim C Y, Oh S T, Ahn H J 2014 Ceram. Int. 40 385

    [7]

    Bissig B, Jaeger T, Ding L, Tiwari A N, Romanyuk Y E 2015 APL Mater. 3 062802

    [8]

    Purwanto A, Widiyandari H, Suryana Risa, Jumari Arif 2015 Thin Solid Films 586 41

    [9]

    Nadarajah Athavan, Carnes M E, Kast M G, Johnson D W 2013 Chem. Mater. 25 4080

    [10]

    Liu H Y, Yan Y, Wang Y L, Wu J H, Zhang G L, Yan L 2015 J. Aeronaut. Mater. 35 63 (in Chinese) [刘宏燕, 颜悦, 望咏林, 伍建华, 张官理, 厉蕾 2015 航空材料学报 35 63]

    [11]

    Hao X H, Xu Q M, Zhao P, Yao Y Y, Tian X Z 2005 Electron. Compd. Mater. 24 7 (in Chinese) [郝喜红, 许启明, 赵鹏, 姚燕燕, 田晓珍 2005 电子元件与材 24 7]

    [12]

    Moholkar A V, Pawar S M, Rajpure K Y, Bhosale C H 2008 J. Alloys Compd. 455 440

    [13]

    Oshima M, Yoshino K 2010 J. Electron. Mater. 39 819

    [14]

    Lai X Y, Jiang H, Zhao H F, Lu P 2013 J. Chin. Ceram. Soc. 411679

    [15]

    Wang J T, Shi X L, Liu W W, Zhong X H, Wang J N, Pyrah L, Sanderson K D, Ramsey P M, Hirata M, Tsuri K 2014 Sci. Rep. 4 1

    [16]

    Noor N, Parkin I P 2013 J. Mater. Chem. C 1 984

    [17]

    Li J C, Wang B F, Shan L T, Jiang Y H, Han X B, Ba D C 2012 Vac. Sci. Techno. 32 225 (in Chinese) [李建昌, 王博锋, 单麟婷, 姜永辉, 韩小波, 巴德纯 2012 真空科学与技术学报 32 225]

    [18]

    Tran Q P, Fang J S, Chin T S 2015 Mater. Sci. Semicond. Process. 40 664

    [19]

    Pan Z C, Zhang P W, Tian X L, Cheng G, Xie Y H, Zhang H C, Zeng X F, Xiao C M, Hu G H, Wei Z G 2013 J. Alloys Compd. 576 31

    [20]

    Yadava A A, Masumdara E U, Moholkarb A V, Neumann-Spallartc M, Rajpured K Y, Bhosaled C H 2009 J. Alloys Compd. 488 350

    [21]

    Miao L, Xu R S, Ma Y L 2008 Mater. Rev. 22 121 (in Chinese) [苗莉, 徐瑞松, 马跃良 2008 材料导报 22 121]

    [22]

    Shi H Y, Zheng W, Tian J Q 2014 J. Synthetic Cryst. 43 2677 (in Chinese) [石海英, 郑威, 田均庆 2014 人工晶体学报 43 2677]

    [23]

    Chowdhury A, Kang D W, Isshiki M, Oyama T, Odaka H, Sichanugrist P, Konagai M 2015 Sol. Energy Mater. Sol. Cells 140 126

    [24]

    Shi X L, Wang J T, Wang J N 2014 J. Alloys Compd. 611 297

    [25]

    Wu S S, Yuan S, Shi L Y, Zhao Y, Fang J H 2010 J. Colloid Interface Sci. 346 12

    [26]

    Supriyono, Surahman H, Krisnandi Y K, Gunlazuardi J 2015 Procedia Environ. Sci. 28 242

    [27]

    Banerjee A N, Kundoo S, Saha P, Chattopadhway K K 2003 J. Sol-Gel Sci. Technol. 28 105

    [28]

    Jing C L, Tang W 2016 Appl. Surf. Sci. 364 843

    [29]

    Wang Y, Xu K W 2004 Acta Phys. Sin. 53 900 (in Chinese) [汪渊, 徐可为 2004 物理学报 53 900]

    [30]

    Georgious H, Mavroforakis M, Dimitropoulos N, Cavourasc D, Theodoridis S 2007 J. Artif. Intell. Med. 41 39

    [31]

    Fraser D B, Cook H D 1972 J. Electrochem Soc. 119 1368

    [32]

    Haacke G 1976 J. Appl. Phys. 47 4086

  • [1]

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Beijing: Electronic Industry Press) pp65-127 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(北京:电子工业出版社) 第65-127页]

    [2]

    Turgut G 2015 Thin Solid Films 594 56

    [3]

    Huang L J, Ren N F, Li B J, Zhou M 2015 Acta Phys. Sin. 64 034211 (in Chinese) [黄立静, 任乃飞, 李保家, 周明 2015 物理学报 64 034211]

    [4]

    Turgut G, Keskenler E F, Aydin S, Tatar D, Sonmez E, Dogan S, Duzgun B 2014 Rare Metals 33 433

    [5]

    Mrabet C, Boukhachem A, Amlouk M, Manoubi T 2016 J. Alloys Compd. 666 392

    [6]

    An H R, Kim C Y, Oh S T, Ahn H J 2014 Ceram. Int. 40 385

    [7]

    Bissig B, Jaeger T, Ding L, Tiwari A N, Romanyuk Y E 2015 APL Mater. 3 062802

    [8]

    Purwanto A, Widiyandari H, Suryana Risa, Jumari Arif 2015 Thin Solid Films 586 41

    [9]

    Nadarajah Athavan, Carnes M E, Kast M G, Johnson D W 2013 Chem. Mater. 25 4080

    [10]

    Liu H Y, Yan Y, Wang Y L, Wu J H, Zhang G L, Yan L 2015 J. Aeronaut. Mater. 35 63 (in Chinese) [刘宏燕, 颜悦, 望咏林, 伍建华, 张官理, 厉蕾 2015 航空材料学报 35 63]

    [11]

    Hao X H, Xu Q M, Zhao P, Yao Y Y, Tian X Z 2005 Electron. Compd. Mater. 24 7 (in Chinese) [郝喜红, 许启明, 赵鹏, 姚燕燕, 田晓珍 2005 电子元件与材 24 7]

    [12]

    Moholkar A V, Pawar S M, Rajpure K Y, Bhosale C H 2008 J. Alloys Compd. 455 440

    [13]

    Oshima M, Yoshino K 2010 J. Electron. Mater. 39 819

    [14]

    Lai X Y, Jiang H, Zhao H F, Lu P 2013 J. Chin. Ceram. Soc. 411679

    [15]

    Wang J T, Shi X L, Liu W W, Zhong X H, Wang J N, Pyrah L, Sanderson K D, Ramsey P M, Hirata M, Tsuri K 2014 Sci. Rep. 4 1

    [16]

    Noor N, Parkin I P 2013 J. Mater. Chem. C 1 984

    [17]

    Li J C, Wang B F, Shan L T, Jiang Y H, Han X B, Ba D C 2012 Vac. Sci. Techno. 32 225 (in Chinese) [李建昌, 王博锋, 单麟婷, 姜永辉, 韩小波, 巴德纯 2012 真空科学与技术学报 32 225]

    [18]

    Tran Q P, Fang J S, Chin T S 2015 Mater. Sci. Semicond. Process. 40 664

    [19]

    Pan Z C, Zhang P W, Tian X L, Cheng G, Xie Y H, Zhang H C, Zeng X F, Xiao C M, Hu G H, Wei Z G 2013 J. Alloys Compd. 576 31

    [20]

    Yadava A A, Masumdara E U, Moholkarb A V, Neumann-Spallartc M, Rajpured K Y, Bhosaled C H 2009 J. Alloys Compd. 488 350

    [21]

    Miao L, Xu R S, Ma Y L 2008 Mater. Rev. 22 121 (in Chinese) [苗莉, 徐瑞松, 马跃良 2008 材料导报 22 121]

    [22]

    Shi H Y, Zheng W, Tian J Q 2014 J. Synthetic Cryst. 43 2677 (in Chinese) [石海英, 郑威, 田均庆 2014 人工晶体学报 43 2677]

    [23]

    Chowdhury A, Kang D W, Isshiki M, Oyama T, Odaka H, Sichanugrist P, Konagai M 2015 Sol. Energy Mater. Sol. Cells 140 126

    [24]

    Shi X L, Wang J T, Wang J N 2014 J. Alloys Compd. 611 297

    [25]

    Wu S S, Yuan S, Shi L Y, Zhao Y, Fang J H 2010 J. Colloid Interface Sci. 346 12

    [26]

    Supriyono, Surahman H, Krisnandi Y K, Gunlazuardi J 2015 Procedia Environ. Sci. 28 242

    [27]

    Banerjee A N, Kundoo S, Saha P, Chattopadhway K K 2003 J. Sol-Gel Sci. Technol. 28 105

    [28]

    Jing C L, Tang W 2016 Appl. Surf. Sci. 364 843

    [29]

    Wang Y, Xu K W 2004 Acta Phys. Sin. 53 900 (in Chinese) [汪渊, 徐可为 2004 物理学报 53 900]

    [30]

    Georgious H, Mavroforakis M, Dimitropoulos N, Cavourasc D, Theodoridis S 2007 J. Artif. Intell. Med. 41 39

    [31]

    Fraser D B, Cook H D 1972 J. Electrochem Soc. 119 1368

    [32]

    Haacke G 1976 J. Appl. Phys. 47 4086

  • [1] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞. 动态热风辅助再结晶策略改善CsPbI2Br钙钛矿在大气环境下的结晶及其光电性能. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240153
    [2] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁. 苯基硫脲调控CsPbIBr2钙钛矿结晶及其光电性能. 物理学报, 2023, 72(15): 158801. doi: 10.7498/aps.72.20230593
    [3] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [4] 程静云, 康朝阳, 宗海涛, 曹国华, 李明. Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善. 物理学报, 2017, 66(2): 027702. doi: 10.7498/aps.66.027702
    [5] 郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒. 基于FTO/VO2/FTO结构的VO2薄膜电压诱导相变光调制特性. 物理学报, 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [6] 侯清玉, 吕致远, 赵春旺. Nb高掺杂量对锐钛矿TiO2导电和光学性能影响. 物理学报, 2015, 64(1): 017201. doi: 10.7498/aps.64.017201
    [7] 黄立静, 任乃飞, 李保家, 周明. 激光辐照对热退火金属/掺氟二氧化锡透明导电薄膜光电性能的影响. 物理学报, 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [8] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性. 物理学报, 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [9] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [10] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [11] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能. 物理学报, 2011, 60(3): 038203. doi: 10.7498/aps.60.038203
    [12] 宋雪云, 张俊兵, 曾祥华, 董雅娟. 电极形状对GaN基发光二极管芯片性能的影响. 物理学报, 2010, 59(7): 4989-4995. doi: 10.7498/aps.59.4989
    [13] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [14] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [15] 王晓栋, 沈军, 王生钊, 张志华. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数. 物理学报, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [16] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化. 物理学报, 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [17] 方 洪, 孙 慧, 朱 骏, 毛翔宇, 陈小兵. 溶胶-凝胶法制备Sr2Bi4Ti5O18薄膜及其铁电性能研究. 物理学报, 2006, 55(6): 3086-3090. doi: 10.7498/aps.55.3086
    [18] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [19] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜. 物理学报, 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [20] 袁宁一, 李金华, 林成鲁. 溶胶-凝胶VO2薄膜转换特性研究. 物理学报, 2002, 51(4): 852-856. doi: 10.7498/aps.51.852
计量
  • 文章访问数:  6464
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-07
  • 修回日期:  2016-03-08
  • 刊出日期:  2016-07-05

/

返回文章
返回