搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率微波作用下高电子迁移率晶体管的损伤机理

李志鹏 李晶 孙静 刘阳 方进勇

引用本文:
Citation:

高功率微波作用下高电子迁移率晶体管的损伤机理

李志鹏, 李晶, 孙静, 刘阳, 方进勇

High power microwave damage mechanism on high electron mobility transistor

Li Zhi-Peng, Li Jing, Sun Jing, Liu Yang, Fang Jin-Yong
PDF
导出引用
  • 本文针对高电子迁移率晶体管在高功率微波注入条件下的损伤过程和机理进行了研究,借助Sentaurus-TCAD仿真软件建立了晶体管的二维电热模型,并仿真了高功率微波注入下的器件响应. 探索了器件内部电流密度、电场强度、温度分布以及端电流随微波作用时间的变化规律. 研究结果表明,当幅值为20 V,频率为14.9 GHz的微波信号由栅极注入后,器件正半周电流密度远大于负半周电流密度,而负半周电场强度高于正半周电场. 在强电场和大电流的共同作用下,器件内部的升温过程同时发生在信号的正、负半周内. 又因栅极下靠近源极侧既是电场最强处,也是电流最密集之处,使得温度峰值出现在该处. 最后,对微波信号损伤的高电子迁移率晶体管进行表面形貌失效分析,表明仿真与实验结果符合良好.
    In this paper, the damage process and mechanism of the typical high electron mobility transistor by injecting high power microwave signals are studied by simulation and experiment methods. By using the device simulator software Sentaurus-TCAD, a typical two-dimensional electro-thermal model of high electron mobility transistor is established with considering the high-field saturation mobility, Shockley-Read-Hall generation-recombination and avalanche breakdown. The simulation is carried out by injecting the 14.9 GHz, 20 V equivalent voltage signals into the gate electrode. Then, the distributions of the space charge density, electric field, current density and temperature with time are analyzed. During the positive half cycle, a conduction channel appears beneath the gate electrode near the source side within device. It is found that the electric field is extremely strong and the current density is very large. Therefore, the temperature increases mainly occurs beneath the gate electrode near the source side. During the negative half cycle, because of the concentration of the large number of carriers induced by avalanche breakdown, the electric field is stronger than that in the positive half cycle. But the current density is lower than that in positive half cycle. Therefore, the increase of temperature is dominated by the electric field. With the effects of both strong electric field and high current density, the temperature of the transistor rises in the whole signal cycle. In addition, temperature in the positive half-cycle rises faster than that in the negative half-cycle.Furthermore, the peak temperature appears at the location beneath gate electrode near the source side because the electric field and current density are strongest in this area. When the temperature within the device is higher than 750 K, intrinsic breakdown occurs in GaAs material, so the heating process becomes quicker. With the temperature increases, the GaAs reaches its melting point, and the device fails permanently. Furthermore, taking the original phase of 0 and for example, we discuss the influences of different original phases on damage process. It is shown that when original phase is zero, the temperature increase rate is faster, and the burn-out time is shorter.Failure analysis of high electron mobility transistor devices damaged by microwaves is carried out with scanning electron microscope, and the simulation results are well consistent with the experimental results. The conclusion may provide guidance for studying high power microwave defense of low noise amplifier and rugged design of high electron mobility transistor in fabrication technology.
      通信作者: 刘阳, lliu_yang@163.com
      Corresponding author: Liu Yang, lliu_yang@163.com
    [1]

    Ren Z, Yin W Y, Shi Y B, Liu Q H 2010 IEEE Trans. Electron Devices 57 345

    [2]

    Chen X, Du Z W, Gong K 2007 High Power Laser Part. Beams 19 449 (in Chinese) [陈曦, 杜正伟, 龚克 2007 强激光与粒子束 19 449]

    [3]

    You H L, Lan J C, Fan J P, Jia X Z, Zha W 2012 Acta Phys. Sin. 61 108501 (in Chinese) [游海龙, 蓝建春, 范菊平, 贾新章, 查薇 2012 物理学报 61 108501]

    [4]

    Ren X R, Chai C C, Ma Z Y, Yang Y T 2013 J. Xidian Univ. 40 36 (in Chinese) [任兴荣, 柴常春, 马振洋, 杨银堂 2013 西安电子科技大学学报 40 36]

    [5]

    Fan J P, Zhang L, Jia X Z 2010 High Power Laser Part. Beams 22 1319 (in Chinese) [范菊平, 张玲, 贾新章 2010 强激光与粒子束 22 1319]

    [6]

    Chai C C, Yang Y T, Zhang B, Leng P, Yang Y, Rao W 2008 J. Semicond. 29 2403 (in Chinese) [柴常春, 杨银堂, 张冰, 冷鹏, 杨杨, 饶伟 2008 半导体学报 29 2403]

    [7]

    Zhang C B, Wang H G, Zhang J D 2014 High Power Laser Part. Beams 26 063014 (in Chinese) [张存波, 王弘刚, 张建德 2014 强激光与粒子束 26 063014]

    [8]

    Zhou H A, Du Z W, Gong K 2005 High Power Laser Part. Beams 17 689 (in Chinese) [周怀安, 杜正伟, 龚克 2005 强激光与粒子束 17 689]

    [9]

    Zhang B, Chai C C, Yang Y T 2010 Acta Phys. Sin. 59 8063 (in Chinese) [张冰, 柴长春, 杨银堂 2010 物理学报 59 8063]

  • [1]

    Ren Z, Yin W Y, Shi Y B, Liu Q H 2010 IEEE Trans. Electron Devices 57 345

    [2]

    Chen X, Du Z W, Gong K 2007 High Power Laser Part. Beams 19 449 (in Chinese) [陈曦, 杜正伟, 龚克 2007 强激光与粒子束 19 449]

    [3]

    You H L, Lan J C, Fan J P, Jia X Z, Zha W 2012 Acta Phys. Sin. 61 108501 (in Chinese) [游海龙, 蓝建春, 范菊平, 贾新章, 查薇 2012 物理学报 61 108501]

    [4]

    Ren X R, Chai C C, Ma Z Y, Yang Y T 2013 J. Xidian Univ. 40 36 (in Chinese) [任兴荣, 柴常春, 马振洋, 杨银堂 2013 西安电子科技大学学报 40 36]

    [5]

    Fan J P, Zhang L, Jia X Z 2010 High Power Laser Part. Beams 22 1319 (in Chinese) [范菊平, 张玲, 贾新章 2010 强激光与粒子束 22 1319]

    [6]

    Chai C C, Yang Y T, Zhang B, Leng P, Yang Y, Rao W 2008 J. Semicond. 29 2403 (in Chinese) [柴常春, 杨银堂, 张冰, 冷鹏, 杨杨, 饶伟 2008 半导体学报 29 2403]

    [7]

    Zhang C B, Wang H G, Zhang J D 2014 High Power Laser Part. Beams 26 063014 (in Chinese) [张存波, 王弘刚, 张建德 2014 强激光与粒子束 26 063014]

    [8]

    Zhou H A, Du Z W, Gong K 2005 High Power Laser Part. Beams 17 689 (in Chinese) [周怀安, 杜正伟, 龚克 2005 强激光与粒子束 17 689]

    [9]

    Zhang B, Chai C C, Yang Y T 2010 Acta Phys. Sin. 59 8063 (in Chinese) [张冰, 柴长春, 杨银堂 2010 物理学报 59 8063]

  • [1] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [2] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [3] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [5] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [6] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [7] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [8] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [9] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [10] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [11] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [12] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [13] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] 马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌. 双极晶体管微波损伤效应与机理. 物理学报, 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [15] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [16] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [17] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [18] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [19] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究. 物理学报, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析. 物理学报, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  3014
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-20
  • 修回日期:  2016-05-11
  • 刊出日期:  2016-08-05

高功率微波作用下高电子迁移率晶体管的损伤机理

  • 1. 中国空间技术研究院西安分院, 西安 710000;
  • 2. 中国文昌航天发射场指挥中心, 文昌 571300;
  • 3. 西安电子科技大学微电子学院, 教育部宽禁带半导体材料与器件重点实验室, 西安 710071
  • 通信作者: 刘阳, lliu_yang@163.com

摘要: 本文针对高电子迁移率晶体管在高功率微波注入条件下的损伤过程和机理进行了研究,借助Sentaurus-TCAD仿真软件建立了晶体管的二维电热模型,并仿真了高功率微波注入下的器件响应. 探索了器件内部电流密度、电场强度、温度分布以及端电流随微波作用时间的变化规律. 研究结果表明,当幅值为20 V,频率为14.9 GHz的微波信号由栅极注入后,器件正半周电流密度远大于负半周电流密度,而负半周电场强度高于正半周电场. 在强电场和大电流的共同作用下,器件内部的升温过程同时发生在信号的正、负半周内. 又因栅极下靠近源极侧既是电场最强处,也是电流最密集之处,使得温度峰值出现在该处. 最后,对微波信号损伤的高电子迁移率晶体管进行表面形貌失效分析,表明仿真与实验结果符合良好.

English Abstract

参考文献 (9)

目录

    /

    返回文章
    返回