搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下目标声散射信号的时频域盲抽取

杨阳 李秀坤

引用本文:
Citation:

水下目标声散射信号的时频域盲抽取

杨阳, 李秀坤

Blind source extraction based on time-frequency characteristics for underwater object acoustic scattering

Yang Yang, Li Xiu-Kun
PDF
导出引用
  • 目标声散射机理及其散射特性为识别目标的物理依据. 针对水下目标声散射成分在 时-频域存在相互混叠干扰,造成目标弹性声散射特征不稳定的问题,提出一种适合在欠定问题下分离目标声散射成分的时频域盲抽取方法. 研究声散射成分的时频特征差异,构造目标回波单源自项的空间时频分布矩阵,通过对其进行特征值分解抽取相应的声散射成分,建立描述目标声散射物理特性的信号模型. 抽取出的目标各弹性波分量与以表面环绕波产生理论计算结果相符. 仿真与消声水池实验数据处理结果表明,该算法可以分离出目标回波的各个声散射成分,提高了分离信号的输出信噪比,为水下目标识别提供稳定和可靠的特征.
    The physical mechanism and signal characteristics of acoustic scattering are the vital basis for target recognition. But underwater target acoustic scattering components are aliasing in time-frequency (TF) domain, for which the target elastic acoustic scattering characteristics are difficult to detect. Additionally, the existing blind source separation methods are effective only on condition that the number of array elements is equal to or greater than the number of the source signals. To address these problems, a novel TF domain blind source extraction method of separating target acoustic scattering components is proposed in this paper. The method only uses the TF energy characteristic differences among the target acoustic scattering components, and special limitations on target echo structures are unnecessary. Image morphology filter is used to remove the cross-term interference from time-frequency distribution (TFD) of the received array signals. Then, the single source which shows maximum energy concentration at the corresponding auto-term TF points is extracted through three operations: i) selecting the single source auto-term TF points from the auto-term ones; ii) constructing the spatial TFD matrix according to the selected single source auto-term TF points; iii) obtaining the single source by decomposing the eigenvalue of their spatial TFD matrix. Finally, the extracted single signal is excluded by the tightening process from the received array signals, and each single signal is separated successively by repeating the above steps. In addition, a signal processing model which can describe the physical characteristics of the target echoes is established based on the separated signal components. Simulations illustrate that the image morphological filter can remove the cross-term interference and improve the TF resolution of the Wigner-Ville distribution. Anechoic pool experimental results show that the TF domain blind source extraction algorithm can well separate each target acoustic scattering component, it can also achieve a higher output signal-to-noise ratio. Furthermore, the separated elastic acoustic scattering components are in good agreement with the results computed by the surface wave generating theory, so the method can provide the robust and reliable feature for underwater target recognition.
      通信作者: 李秀坤, lixiukun@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51279033)和黑龙江省自然科学基金(批准号:F201346)资助的课题.
      Corresponding author: Li Xiu-Kun, lixiukun@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51279033) and the Natural Science Foundation of Heilongjiang Province, China (Grant No. F201346).
    [1]

    La Follett J R, Williams K L, Marston P L 2011 J. Acoust. Soc. Am. 43 669

    [2]

    Williams KL, Kargl SG, Thorsos 2010 J. Acoust. Soc. Am. 127 6

    [3]

    Espana A, Williams K L, Plotnick D S 2013 J. Acoust. Soc. Am. 9 1

    [4]

    Bucaro J, Houston B, Saniga M, Dragonette L, Yoder T, Dey S, Kraus L, Carin L 2008 J. Acoust. Soc. Am. 123 738

    [5]

    Fan J 2001 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [范军 2001 博士学位论文(上海: 上海交通大学)]

    [6]

    Pan A, Fan J, Wang B 2013 J. Acoust. Soc. Am. 134 3452

    [7]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese) [潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 物理学报 63 214301]

    [8]

    Zheng G Y, Fan J, Tang W L 2010 Acta Acustica 35 31 (in Chinese) [郑国垠, 范军, 汤渭霖 2010 声学学报 35 31]

    [9]

    Anderson S D 2012 Ph. D. Dissertation (Georgia Institute of Technology)

    [10]

    Anderson S D, Sabra K G, Zakharia M E, Sessarego J P 2012 J. Acoust. Soc. Am. 131 164

    [11]

    Li X K, Meng X X, Xia Z 2015 Acta Phys. Sin. 64 064302 (in Chinese) [李秀坤, 孟祥夏, 夏峙 2015 物理学报 64 064302]

    [12]

    Xia Z, Li X K 2015 Acta Phys. Sin. 64 094302 (in Chinese) [夏峙, 李秀坤 2015 物理学报 64 094302]

    [13]

    Li F H, Zhang Y J, Zhang R H, Liu J J 2010 Phys. Sci. China 53 1408

    [14]

    Zhu N, Wu S 2009 J. Acoust. Soc. Am. 126 2254

    [15]

    Bouaynaya N, Charif-Chefchaouni M, Schonfeld D 2008 IEEE Trans. Pattern Anal. Mach, Intell. 30 5

    [16]

    Tang W L, Fan J 2004 Acta Acustica 29 5 (in Chinese) [汤渭霖, 范军 2004 声学学报 29 5]

    [17]

    Tesei A, Fawcett J A, Lim R 2008 Appl. Acoust. 69 422

    [18]

    Touraine N, Haumesser L, De’cultot D, Maze G 2000 J. Acoustic Soc. Am. 108 5

    [19]

    Tang W L 1994 Acta Acustica 19 92 (in Chinese) [汤渭霖 1994 声学学报 19 92]

    [20]

    Thomas M, Lethakumary B, Jacob R 2012 ICCEET p717

  • [1]

    La Follett J R, Williams K L, Marston P L 2011 J. Acoust. Soc. Am. 43 669

    [2]

    Williams KL, Kargl SG, Thorsos 2010 J. Acoust. Soc. Am. 127 6

    [3]

    Espana A, Williams K L, Plotnick D S 2013 J. Acoust. Soc. Am. 9 1

    [4]

    Bucaro J, Houston B, Saniga M, Dragonette L, Yoder T, Dey S, Kraus L, Carin L 2008 J. Acoust. Soc. Am. 123 738

    [5]

    Fan J 2001 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [范军 2001 博士学位论文(上海: 上海交通大学)]

    [6]

    Pan A, Fan J, Wang B 2013 J. Acoust. Soc. Am. 134 3452

    [7]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese) [潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 物理学报 63 214301]

    [8]

    Zheng G Y, Fan J, Tang W L 2010 Acta Acustica 35 31 (in Chinese) [郑国垠, 范军, 汤渭霖 2010 声学学报 35 31]

    [9]

    Anderson S D 2012 Ph. D. Dissertation (Georgia Institute of Technology)

    [10]

    Anderson S D, Sabra K G, Zakharia M E, Sessarego J P 2012 J. Acoust. Soc. Am. 131 164

    [11]

    Li X K, Meng X X, Xia Z 2015 Acta Phys. Sin. 64 064302 (in Chinese) [李秀坤, 孟祥夏, 夏峙 2015 物理学报 64 064302]

    [12]

    Xia Z, Li X K 2015 Acta Phys. Sin. 64 094302 (in Chinese) [夏峙, 李秀坤 2015 物理学报 64 094302]

    [13]

    Li F H, Zhang Y J, Zhang R H, Liu J J 2010 Phys. Sci. China 53 1408

    [14]

    Zhu N, Wu S 2009 J. Acoust. Soc. Am. 126 2254

    [15]

    Bouaynaya N, Charif-Chefchaouni M, Schonfeld D 2008 IEEE Trans. Pattern Anal. Mach, Intell. 30 5

    [16]

    Tang W L, Fan J 2004 Acta Acustica 29 5 (in Chinese) [汤渭霖, 范军 2004 声学学报 29 5]

    [17]

    Tesei A, Fawcett J A, Lim R 2008 Appl. Acoust. 69 422

    [18]

    Touraine N, Haumesser L, De’cultot D, Maze G 2000 J. Acoustic Soc. Am. 108 5

    [19]

    Tang W L 1994 Acta Acustica 19 92 (in Chinese) [汤渭霖 1994 声学学报 19 92]

    [20]

    Thomas M, Lethakumary B, Jacob R 2012 ICCEET p717

  • [1] 罗勇, 杨党国, 武从海, 李虎, 张树海, 吴军强. 三维空腔流动波系建模及模态演化研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220922
    [2] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220479
    [3] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究. 物理学报, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [4] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [5] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [6] 胡珍, 范军, 张培珍, 吴玉双. 水下掩埋目标的散射声场计算与实验. 物理学报, 2016, 65(6): 064301. doi: 10.7498/aps.65.064301
    [7] 李威, 李骏, 龚志雄. 水下任意刚性散射体对Bessel波的散射特性分析. 物理学报, 2015, 64(15): 154305. doi: 10.7498/aps.64.154305
    [8] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [9] 李秀坤, 孟祥夏, 夏峙. 水下目标几何声散射回波在分数阶傅里叶变换域中的特性. 物理学报, 2015, 64(6): 064302. doi: 10.7498/aps.64.064302
    [10] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [11] 夏峙, 李秀坤. 水下目标弹性声散射信号分离. 物理学报, 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [12] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法. 物理学报, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [13] 杨立学, 陈克安, 张冰瑞, 梁雍. 基于不相似度评价的水下声目标分类与听觉特征辨识. 物理学报, 2014, 63(13): 134304. doi: 10.7498/aps.63.134304
    [14] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [15] 于利刚, 李朝晖, 王仁乾, 马黎黎. 含玻璃微球的黏弹性复合材料覆盖层的水下吸声性能分析. 物理学报, 2013, 62(6): 064301. doi: 10.7498/aps.62.064301
    [16] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [17] 王娜, 陈克安. 水下噪声音色属性回归模型及其在目标识别中的应用. 物理学报, 2010, 59(4): 2873-2881. doi: 10.7498/aps.59.2873
    [18] 陆鹏, 王耀俊. 考虑界面状况时柱状弹性固体的声波散射. 物理学报, 2001, 50(4): 697-703. doi: 10.7498/aps.50.697
    [19] 朱沛然, 江伟林, 徐天冰, 殷士端. 硅化物薄膜的质子弹性散射分析. 物理学报, 1992, 41(12): 2049-2054. doi: 10.7498/aps.41.2049
    [20] 郑肇本, 黄曾旸, 汪德昭. 用极点方法识别水下目标. 物理学报, 1984, 33(4): 538-546. doi: 10.7498/aps.33.538
计量
  • 文章访问数:  3103
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 修回日期:  2016-06-10
  • 刊出日期:  2016-08-05

水下目标声散射信号的时频域盲抽取

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001;
  • 2. 哈尔滨工程大学水声工程学院, 哈尔滨 150001
  • 通信作者: 李秀坤, lixiukun@hrbeu.edu.cn
    基金项目: 国家自然科学基金(批准号:51279033)和黑龙江省自然科学基金(批准号:F201346)资助的课题.

摘要: 目标声散射机理及其散射特性为识别目标的物理依据. 针对水下目标声散射成分在 时-频域存在相互混叠干扰,造成目标弹性声散射特征不稳定的问题,提出一种适合在欠定问题下分离目标声散射成分的时频域盲抽取方法. 研究声散射成分的时频特征差异,构造目标回波单源自项的空间时频分布矩阵,通过对其进行特征值分解抽取相应的声散射成分,建立描述目标声散射物理特性的信号模型. 抽取出的目标各弹性波分量与以表面环绕波产生理论计算结果相符. 仿真与消声水池实验数据处理结果表明,该算法可以分离出目标回波的各个声散射成分,提高了分离信号的输出信噪比,为水下目标识别提供稳定和可靠的特征.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回