搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层二硫化钼力学性能温度和手性效应的分子动力学模拟

李明林 万亚玲 胡建玥 王卫东

引用本文:
Citation:

单层二硫化钼力学性能温度和手性效应的分子动力学模拟

李明林, 万亚玲, 胡建玥, 王卫东

Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide

Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong
PDF
导出引用
  • 针对文献中单层二硫化钼力学性能随温度变化趋势的不明确,本文基于Stillinger-Weber(SW)原子间势函数,采用经典分子动力学方法对单层二硫化钼在不同热力学温度下(1-800 K)的力学行为进行了单轴拉伸模拟,研究温度和手性对其力学性能的影响. 结果表明:单层二硫化钼的杨氏模量、抗拉强度、拉伸极限应变等力学性能均随温度的升高而显著减小;单层二硫化钼的杨氏模量和抗拉强度存在明显的手性效应,而不同手性方向的拉伸极限应变差别不大,可以忽略;温度低于800 K时,不同手性二硫化钼断裂之前受拉加载和卸载均没有明显的相变发生;温度在1 K时,沿锯齿方向受拉的单层二硫化钼在极限强度附近会有明显的局部相变发生,且卸载时相变结构能保持稳定. 本文也测量出单层二硫化钼在温度1-800 K下沿扶手和锯齿方向的线膨胀系数.
    Recently, the effect of temperature on the mechanical property (the Young's modulus) of the single-layer molybdenum disulfide (SLMoS2) is shown to be insignificant, which is obviously incompatible with the previously published result, i. e. the Young's modulus of SLMOS2 decreases monotonically as temperature increases. Aiming at clarifying the relationships between the mechanical properties of the single-layer molybdenum disulfide (SLMoS2) along the armchair (AC) and zigzag (ZZ) directions and the temperature, classical molecular dynamics (MD) simulations are performed to stretch the SLMoS2 along the AC and ZZ directions at the temperatures ranging from 1 K to 800 K by using the Stillinger-Weber (SW) interatomic potentials in this paper. The mechanical properties of SLMoS2 at the temperatures ranging from 1 K to 800 K, including ultimate strength, ultimate strain, and Young's Modulus, are calculated based on the stress-strain results obtained from the simulations. Results are obtained and given as follows. (1) The mechanical properties of the SLMoS2, including the ultimate strength and Young's modulus, are found to monotonically decrease as temperature increases. Increasing the temperature, the ultimate strength of SLMoS2 in the AC direction drops faster than in the ZZ direction, whereas the Young's modulus of SLMoS2 in the ZZ direction decreases quicker than in the AC direction, which means that the chirality effect on the ultimate strength is remarkably different from the Young's modulus of SLMoS2. However, the ultimate strain in the ZZ direction at the temperatures in a range from 1 K to 800 K is close to that in the AC direction, which means that the effect of chirality on the ultimate strain is insignificant. (2) Unlike the published results in the literature, the phase transition of SLMoS2 is found to only occur at a temperature of 1 K and at the moment of initial crack formation as tensiled along the ZZ direction, and the new phase of quadrilateral structure keeps stable after unloading. (3) The linear thermal expansion coefficients along the ZZ and AC directions are also measured, the magnitudes of which are found to be consistent with the published experimental results. Our simulation results support the viewpoint that the effect of the temperature on the mechanical property of SLMoS2 is significant, and the SLMoS2 can be regarded as an anisotropic material as the chirality effect cannot be ignored. The linear thermal expansion coefficients obtained with MD simulation are all in good agreement with the experimental data.
      Corresponding author: Li Ming-Lin, liminglin@fzu.edu.cn;wangwd@mail.xidian.edu.cn ; Wang Wei-Dong, liminglin@fzu.edu.cn;wangwd@mail.xidian.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 50903017, 51205302).
    [1]

    Savan A, Pflger E, Voumard P, Schrer A, Simmonds M 2000 Lubr. Sci. 12 185

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2011 ACS Nano 6 74

    [4]

    Lee J, Wang Z, He K, Shan J, Feng P X L 2013 ACS Nano 7 6086

    [5]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X 2014 Nat. Commun. 5

    [6]

    Gan Y, Zhao H 2014 Phys. Lett. A 378 2910

    [7]

    Li T 2012 Phys. Rev. B 85 235407

    [8]

    Yue Q, Kang J, Shao Z, Zhang X, Chang S, Wang G, Qin S, Li J 2012 Phys. Lett. A 376 1166

    [9]

    Peng Y, Meng Z, Zhong C, Lu J, Yu W, Jia Y, Qian Y 2001 Chem. Lett. 772

    [10]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [11]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423

    [12]

    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S, Agrat N, Rubio-Bollinger G 2012 Nanoscale Res. Lett. 7 1

    [13]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [14]

    Xiong S, Cao G 2015 Nanotechnology 26 185705

    [15]

    Jiang J W, Park H S 2014 Appl. Phys. Lett. 105 033108

    [16]

    Zhao J, Jiang J W, Rabczuk T 2013 Appl. Phys. Lett. 103 231913

    [17]

    Gamboa A, Vignoles G L, Leyssale J M 2015 Carbon 89 176

    [18]

    Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013 物理学报 62 016102]

    [19]

    Shang F L, Guo X C, BeiCun L H, MeiYe Y C 2010 Advances in Mechanics 40 263 (in Chinese) [尚福林, 郭显聪, 北村隆行, 梅野宜崇 2010 力学进展 40 263]

    [20]

    Li M L, Wan Y L, Tu L P, Yang Y C, Lou J 2016 Nanoscale Res. Lett. 11 155

    [21]

    Wang W, Li S, Min J, Yi C, Zhan Y, Li M L 2014 Nanoscale Res. Lett. 9 41

    [22]

    Jiang J W 2015 Nanotechnology 26 315706

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [25]

    Han T W, He P F, Wang J, Wu A H 2009 J. Tongji University(Natural Science) 37 1638 (in Chinese) [韩同伟, 贺鹏飞, 王健, 吴艾辉 2009 同济大学学报: 自然科学版 37 1638]

    [26]

    Liu T, Liu M S 2014 Materials For Mechanical Engineering 38 73 (in Chinese) [刘彤, 刘敏珊 2014 机械工程材料 38 73]

    [27]

    El-Mahalawy S, Evans B 1976 J. Appl. Crystallogr. 9 403

    [28]

    Zhao J, Kou L, Jiang J W, Rabczuk T 2014 Nanotechnology 25 295701

  • [1]

    Savan A, Pflger E, Voumard P, Schrer A, Simmonds M 2000 Lubr. Sci. 12 185

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2011 ACS Nano 6 74

    [4]

    Lee J, Wang Z, He K, Shan J, Feng P X L 2013 ACS Nano 7 6086

    [5]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X 2014 Nat. Commun. 5

    [6]

    Gan Y, Zhao H 2014 Phys. Lett. A 378 2910

    [7]

    Li T 2012 Phys. Rev. B 85 235407

    [8]

    Yue Q, Kang J, Shao Z, Zhang X, Chang S, Wang G, Qin S, Li J 2012 Phys. Lett. A 376 1166

    [9]

    Peng Y, Meng Z, Zhong C, Lu J, Yu W, Jia Y, Qian Y 2001 Chem. Lett. 772

    [10]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [11]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423

    [12]

    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S, Agrat N, Rubio-Bollinger G 2012 Nanoscale Res. Lett. 7 1

    [13]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [14]

    Xiong S, Cao G 2015 Nanotechnology 26 185705

    [15]

    Jiang J W, Park H S 2014 Appl. Phys. Lett. 105 033108

    [16]

    Zhao J, Jiang J W, Rabczuk T 2013 Appl. Phys. Lett. 103 231913

    [17]

    Gamboa A, Vignoles G L, Leyssale J M 2015 Carbon 89 176

    [18]

    Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013 物理学报 62 016102]

    [19]

    Shang F L, Guo X C, BeiCun L H, MeiYe Y C 2010 Advances in Mechanics 40 263 (in Chinese) [尚福林, 郭显聪, 北村隆行, 梅野宜崇 2010 力学进展 40 263]

    [20]

    Li M L, Wan Y L, Tu L P, Yang Y C, Lou J 2016 Nanoscale Res. Lett. 11 155

    [21]

    Wang W, Li S, Min J, Yi C, Zhan Y, Li M L 2014 Nanoscale Res. Lett. 9 41

    [22]

    Jiang J W 2015 Nanotechnology 26 315706

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [25]

    Han T W, He P F, Wang J, Wu A H 2009 J. Tongji University(Natural Science) 37 1638 (in Chinese) [韩同伟, 贺鹏飞, 王健, 吴艾辉 2009 同济大学学报: 自然科学版 37 1638]

    [26]

    Liu T, Liu M S 2014 Materials For Mechanical Engineering 38 73 (in Chinese) [刘彤, 刘敏珊 2014 机械工程材料 38 73]

    [27]

    El-Mahalawy S, Evans B 1976 J. Appl. Crystallogr. 9 403

    [28]

    Zhao J, Kou L, Jiang J W, Rabczuk T 2014 Nanotechnology 25 295701

  • [1] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220738
    [2] 陈琼, 薛春霞, 王勋. 基于温度效应的无限长压电圆杆纵波分析. 物理学报, 2021, 70(3): 035201. doi: 10.7498/aps.70.20200774
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [5] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [6] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [7] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究. 物理学报, 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [8] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [9] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [10] 胡雪兰, 罗阳, 赵若汐, 胡艳敏, 张艳峰, 宋庆功. NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究. 物理学报, 2016, 65(20): 206101. doi: 10.7498/aps.65.206101
    [11] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] 山磊, 田煜, 孟永钢, 张向军. 分散介质和温度对纳米二氧化硅胶体剪切增稠行为的影响. 物理学报, 2015, 64(6): 068301. doi: 10.7498/aps.64.068301
    [13] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [14] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [15] 王沅倩, 何军, 肖思, 杨能安, 陈火章. MoS2溶液的波长选择性光限幅效应研究. 物理学报, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [16] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟. 物理学报, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究 . 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [18] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应. 物理学报, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [19] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [20] 刘 艳, 董云杉, 岳建岭, 李戈扬. 反应磁控溅射ZrN/AlON纳米多层膜的晶体生长和超硬效应. 物理学报, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
计量
  • 文章访问数:  3986
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-04
  • 修回日期:  2016-06-25
  • 刊出日期:  2016-09-05

单层二硫化钼力学性能温度和手性效应的分子动力学模拟

    基金项目: 国家自然科学基金青年科学基金(批准号:50903017,51205302)资助的课题.

摘要: 针对文献中单层二硫化钼力学性能随温度变化趋势的不明确,本文基于Stillinger-Weber(SW)原子间势函数,采用经典分子动力学方法对单层二硫化钼在不同热力学温度下(1-800 K)的力学行为进行了单轴拉伸模拟,研究温度和手性对其力学性能的影响. 结果表明:单层二硫化钼的杨氏模量、抗拉强度、拉伸极限应变等力学性能均随温度的升高而显著减小;单层二硫化钼的杨氏模量和抗拉强度存在明显的手性效应,而不同手性方向的拉伸极限应变差别不大,可以忽略;温度低于800 K时,不同手性二硫化钼断裂之前受拉加载和卸载均没有明显的相变发生;温度在1 K时,沿锯齿方向受拉的单层二硫化钼在极限强度附近会有明显的局部相变发生,且卸载时相变结构能保持稳定. 本文也测量出单层二硫化钼在温度1-800 K下沿扶手和锯齿方向的线膨胀系数.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回