搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

203W全光纤全保偏结构皮秒掺铥光纤激光器

刘江 刘晨 师红星 王璞

引用本文:
Citation:

203W全光纤全保偏结构皮秒掺铥光纤激光器

刘江, 刘晨, 师红星, 王璞

203 W all-polarization-maintaining picosecond thulium-doped all-fiber laser

Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu
PDF
导出引用
  • 利用光纤布拉格光栅作为光谱滤波器来控制锁模掺铥光纤激光器的光谱形状和脉冲宽度,以及结合纤芯抽运高掺杂双包层掺铥光纤技术,实现了2m波段重复频率为611.5 MHz的皮秒脉冲激光输出.利用该高重复频率皮秒激光作为种子源,结合主振荡功率放大技术,研制出了百瓦量级全光纤全保偏结构皮秒脉冲掺铥光纤激光放大系统,得到了平均功率为203 W的线偏振皮秒脉冲激光输出,偏振消光比15 dB,激光脉冲宽度为15 ps,相应的激光峰值功率为22 kW.该结果为目前国际上2m波段全光纤结构超短脉冲激光器所产生的最高平均输出功率,为下一步25m波段高功率中红外激光的产生提供了可靠的抽运源.
    High-power ultrafast fiber lasers are important sources for a number of applications including material processing, pump source for optical parametric oscillator, and supercontinuum generation. Ultrafast thulium-doped fiber lasers, which extend the wavelength range of fiber lasers from 1.8 to 2.1 m, have rapidly developed in the last several years and the average output power of the ultrafast thulium-doped fiber amplifiers has reached a hundredwatt level. The broad and smooth gain spectrum of thulium-doped fiber makes it a well-suited gain medium for generating the ultrashort laser pulses and broad wavelength tunability. However, previous reports on ultrafast thulium-doped fiber lasers and amplifiers were related to non-PM fiber configuration. These ultrafast thulium-doped fiber lasers and amplifiers may suffer the environmental instability, which means that these fiber sources are sensitive to externally-induced changes, like significant temperature variations and mechanical perturbations which will influence the fiber birefringence property. An effective method to eliminate this environmental instability is to build an all-PM, thulium-doped all-fiber MOPA configuration where the light polarizes only along the slow or fast axis in the PM fiber and PM-fiber components. Here, we demonstrate a high-power all-polarization-maintaining picosecond thulium-doped all-fiber master-oscillator power-amplifier (MOPA) system. The linearly-polarized thulium-doped all-fiber MOPA yields 203 W of average output power at central wavelength of 1985 nm with a polarization extinction ratio of 15 dB. The pulse duration of 15 ps at 611.5 MHz repetition-rate results in a peak-power of 22 kW in the final thulium-doped fiber power amplifier. To the best of our knowledge, this is the highest average output power ever reported for a picosecond-pulsed thulium-doped all-fiber laser at 2 m wavelength. Furthermore, high-power linearly-polarized thulium-doped fiber laser with compact and simple design is greatly demanded for a variety of applications, such as coherent polarization beam combination, and frequency conversion in nonlinear crystals.
      通信作者: 王璞, wangpuemail@bjut.edu.cn
    • 基金项目: 国家自然科学基金重大科研仪器研制项目(批准号:61527822)、国家自然科学基金重点项目(批准号:61235010)、国家自然科学基金青年项目(批准号:61505004)、中国博士后科学基金特别资助项目(批准号:2016T90019)、中国博士后科学基金面上资助项目(批准号:2015M570019)、北京市博士后工作经费资助项目(批准号:2015ZZ-03)和北京市教委科技计划一般项目(批准号:KM201610005028)资助的课题.
      Corresponding author: Wang Pu, wangpuemail@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61527822, 61235010, 61505004), the China Postdoctoral Science Foundation (Grant Nos. 2016T90019, 2015M570019), the Beijing Postdoctoral Research Foundation, China (Grant No. 2015ZZ-03), and the Scientific Research General Program of Beijing Municipal Commission of Education, China (Grant No. KM201610005028).
    [1]

    Moulton P, Rines G, Slobodtchikov E, Wall K, Frith G, Samson B, Carter A 2009 IEEE J. Sel. Top. Quantum Electron 15 85

    [2]

    Baudelet M, Willis C, Shah L, Richardson M 2010 Opt. Express 18 7905

    [3]

    Li Z, Heidt A M, Daniel J M O, Jung Y, Alam S U, Richardson D J 2013 Opt. Express 21 9289

    [4]

    Mingareeva I, Weirauch F, Olowinsky A, Shah L, Kadwani P, Richardson M 2012 Opt. Laser Technol. 44 2095

    [5]

    Hardy L, Wilson C, Irby P, Fried N 2014 IEEE J. Sel. Top. Quantum Electron 20 0902604

    [6]

    Gather M, Yun S 2011 Nature Photon. 5 406

    [7]

    Popmintchev T, Chen M, Arpin P, Murnane M, Kapteyn H 2010 Nature Photon. 4 822

    [8]

    Nieuwenhuis A, Lee C, van d, Lindsay I, Gross P, Boller K 2008 Opt. Lett. 33 52

    [9]

    Dergachev A, Armstrong D, Smith A, Drake T, Dubois M 2007 Opt. Express 15 14404

    [10]

    Leindecker N, Marandi A, Byer R, Vodopyanov K, Jiang J, Hartl I, Fermann M, Schunemann P 2012 Opt. Express 20 7046

    [11]

    Wang P, Liu J 2013 Chin. J. Laser 40 1002 (in Chinese) [王璞, 刘江2013中国激光40 1002]

    [12]

    Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D 2010 Opt. Lett. 35 2991

    [13]

    Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442

    [14]

    Sims R, Kadwani P, Shah A, Richardson M 2013 Opt. Lett. 38 121

    [15]

    Wan P, Yang L, Liu J 2013 Opt. Express 21 21374

    [16]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [17]

    Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tnnermann A 2014 Opt. Lett. 39 4671

    [18]

    Gebhardt M, Gaida C, Hödrich S, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 2770

    [19]

    Gaida C, Gebhardt M, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 5160

    [20]

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206 (in Chinese) [窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉2015物理学报64 064206]

    [21]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese) [刘欢, 巩马理, 曹士英, 林百科, 方占军2015物理学报64 114210]

    [22]

    Liu J, Xu J, Wang Q, Wang P 2012 Chin. J. Laser 39 2009 (in Chinese) [刘江, 徐佳, 王潜, 王璞2012中国激光39 2009]

  • [1]

    Moulton P, Rines G, Slobodtchikov E, Wall K, Frith G, Samson B, Carter A 2009 IEEE J. Sel. Top. Quantum Electron 15 85

    [2]

    Baudelet M, Willis C, Shah L, Richardson M 2010 Opt. Express 18 7905

    [3]

    Li Z, Heidt A M, Daniel J M O, Jung Y, Alam S U, Richardson D J 2013 Opt. Express 21 9289

    [4]

    Mingareeva I, Weirauch F, Olowinsky A, Shah L, Kadwani P, Richardson M 2012 Opt. Laser Technol. 44 2095

    [5]

    Hardy L, Wilson C, Irby P, Fried N 2014 IEEE J. Sel. Top. Quantum Electron 20 0902604

    [6]

    Gather M, Yun S 2011 Nature Photon. 5 406

    [7]

    Popmintchev T, Chen M, Arpin P, Murnane M, Kapteyn H 2010 Nature Photon. 4 822

    [8]

    Nieuwenhuis A, Lee C, van d, Lindsay I, Gross P, Boller K 2008 Opt. Lett. 33 52

    [9]

    Dergachev A, Armstrong D, Smith A, Drake T, Dubois M 2007 Opt. Express 15 14404

    [10]

    Leindecker N, Marandi A, Byer R, Vodopyanov K, Jiang J, Hartl I, Fermann M, Schunemann P 2012 Opt. Express 20 7046

    [11]

    Wang P, Liu J 2013 Chin. J. Laser 40 1002 (in Chinese) [王璞, 刘江2013中国激光40 1002]

    [12]

    Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D 2010 Opt. Lett. 35 2991

    [13]

    Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442

    [14]

    Sims R, Kadwani P, Shah A, Richardson M 2013 Opt. Lett. 38 121

    [15]

    Wan P, Yang L, Liu J 2013 Opt. Express 21 21374

    [16]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [17]

    Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tnnermann A 2014 Opt. Lett. 39 4671

    [18]

    Gebhardt M, Gaida C, Hödrich S, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 2770

    [19]

    Gaida C, Gebhardt M, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 5160

    [20]

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206 (in Chinese) [窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉2015物理学报64 064206]

    [21]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese) [刘欢, 巩马理, 曹士英, 林百科, 方占军2015物理学报64 114210]

    [22]

    Liu J, Xu J, Wang Q, Wang P 2012 Chin. J. Laser 39 2009 (in Chinese) [刘江, 徐佳, 王潜, 王璞2012中国激光39 2009]

计量
  • 文章访问数:  4584
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 修回日期:  2016-07-14
  • 刊出日期:  2016-10-05

203W全光纤全保偏结构皮秒掺铥光纤激光器

  • 1. 北京工业大学激光工程研究院, 国家产学研激光技术中心, 北京 100124
  • 通信作者: 王璞, wangpuemail@bjut.edu.cn
    基金项目: 国家自然科学基金重大科研仪器研制项目(批准号:61527822)、国家自然科学基金重点项目(批准号:61235010)、国家自然科学基金青年项目(批准号:61505004)、中国博士后科学基金特别资助项目(批准号:2016T90019)、中国博士后科学基金面上资助项目(批准号:2015M570019)、北京市博士后工作经费资助项目(批准号:2015ZZ-03)和北京市教委科技计划一般项目(批准号:KM201610005028)资助的课题.

摘要: 利用光纤布拉格光栅作为光谱滤波器来控制锁模掺铥光纤激光器的光谱形状和脉冲宽度,以及结合纤芯抽运高掺杂双包层掺铥光纤技术,实现了2m波段重复频率为611.5 MHz的皮秒脉冲激光输出.利用该高重复频率皮秒激光作为种子源,结合主振荡功率放大技术,研制出了百瓦量级全光纤全保偏结构皮秒脉冲掺铥光纤激光放大系统,得到了平均功率为203 W的线偏振皮秒脉冲激光输出,偏振消光比15 dB,激光脉冲宽度为15 ps,相应的激光峰值功率为22 kW.该结果为目前国际上2m波段全光纤结构超短脉冲激光器所产生的最高平均输出功率,为下一步25m波段高功率中红外激光的产生提供了可靠的抽运源.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回