搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

筒形高功率脉冲磁控溅射源的开发与放电特性

肖舒 吴忠振 崔岁寒 刘亮亮 郑博聪 林海 傅劲裕 田修波 潘锋 朱剑豪

引用本文:
Citation:

筒形高功率脉冲磁控溅射源的开发与放电特性

肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪

Cylindric high power impulse magnetron sputtering source and its discharge characteristics

Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu
PDF
导出引用
  • 高功率脉冲磁控溅射以较高的溅射材料离化率及其所带来的高致密度、高结合力和高综合性能成为物理气相沉积领域的新宠,然而其沉积速率低、放电不稳定、溅射材料离化率不一等缺点阻碍了其在工业界的推广和应用. 针对高功率脉冲磁控溅射技术固有的缺陷,我们从靶源出发,设计了一种筒形溅射源,将放电限制在筒形溅射源内部,放电不稳定喷溅出的金属液滴和溅射出来但并未离化的溅射材料无法被负电位的引出栅引出而影响薄膜沉积,只有离化的溅射材料可以引出并沉积形成薄膜,而电子将在筒形溅射源内部反复振荡,和未离化的溅射原子剧烈碰撞,带动进一步离化. 本文通过磁场和放电的模拟发现筒形溅射源内部电子、离子呈花瓣状分布,8条磁铁均匀分布的结构具有最优的靶材利用率. 据此开发的筒形溅射源可在高功率脉冲磁控溅射条件下正常放电,其放电靶电流随靶电压变化呈现出高功率脉冲磁控溅射典型的伏安特性特征,复合电流施加后,有明显的预离化作用. 溅射跑道面积占靶材表面的60%以上,筒形溅射源中心的离子电流波形与靶电流波形类似,但相对靶电流延迟约40 s,数值约为靶电流的1/10. 结果证明,筒形溅射源可有效地应用到高功率脉冲磁控溅射放电中,并成为促进其推广和应用的一种新路径.
    High power impulse magnetron sputtering (HiPIMS) is a popular physical vapor deposition (PVD) technology because of the high ionization of the sputtering materials, large coating density, good adhesion, and other favorable properties. However, this technique suffers some disadvantages such as the small deposition rate induced by the high target potential, the metallic droplets produced by the unstable discharge, and different ionizations for different sputtering materials, thereby hampering wider acceptance by the industry. A cylindric HiPIMS source in which the discharge is restricted in the cylinder is described in this paper. By using this source, coatings can be deposited with 100% ions without metallic droplets arising from the unstable discharge, and the unionized sputtered atoms cannot be extracted by the extraction grid with negative potential. Electron oscillation and repetitive sputtering of the unionized atoms occur in the cylinder to enhance collision and ionization. Due to the enlarged discharge area by the cylinder internal surface comparing with the area of the ion outlet (end face of the cylinder), the sputtering ions converge from the inwall to the center of the cylinder target and form an enhanced flow to spray out from the source, which will improve the deposition rate. The structure and discharge characteristics of the novel HiPIMS source are investigated by simulation and experiments. Our results indicate that 8 magnets can provide the reasonable magnetic field and the highest target utilization rate. The distributions of electrons and ions in the target each consist of 8 petals in the optimized magnetic structure, and the highest plasma density happens near the target, which is above 1.31017 m-3. The discharge characteristics confirm that the cylindric sputtering source can be operated under HiPIMS conditions and the evolution of the target currents with target voltage exhibits I-V characteristics typical of HiPIMS. An obvious pre-ionization is observed on the discharge glow and discharge current curves when the extra direct current (DC) is added. The racetrack area is about 60.0% of the target surface. The ion current curves are similar to those of the target currents, but a 40 s delay and about one-tenth current value are observed compared with the target currents. The sputtering is improved by the extra DC, inducing the increased metallic ions and the opposite evolution of gas ions. The results suggest that the cylindric sputtering source can be effectively used to conduct HiPIMS and is a novel way to improve and promote the application of HiPIMS.
      通信作者: 吴忠振, wuzz@pkusz.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51301004,U1330110)、深圳科技研究基金(批准号:JCYJ20140903102215536,JCYJ2015 0828093127698)和香港城市大学应用研究基金(批准号:9667122)资助的课题.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 51301004, U1330110), the Science and Technology Research Foundation of Shenzhen, China (Grant Nos. JCYJ20140903102215536, JCYJ20150828093127698), and the Applied Research Foundation of the City University of Hong Kong, China (Grant No. 9667122).
    [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Shimizu T, Villamayor M, Lundin D, Helmersson U 2016 J. Phys. D: Appl. Phys. 49 065202

    [3]

    Yang Y, Zhou X, Liu J X, Anders A 2016 Appl. Phys. Lett. 108 034101

    [4]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [5]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [8]

    Wei S, Tian X B, Gong C Z 2013 Vacuum 50 6 (in Chinese) [魏松, 田修波, 巩春志 2013 真空 50 6]

    [9]

    Lin J, Moore J J, Sproul W D, Mishra B, Rees J A, Wu Z 2009 Surf. Coat. Technol. 203 3676

    [10]

    Qin X, Ke P, Wang A, Kim K H 2013 Surf. Coat. Technol. 228 275

    [11]

    Holtzer N, Antonin O, Minea T, Marnieros S, Bouchier D 2014 Surf. Coat. Technol. 250 32

    [12]

    Olejnček J, Hubička Z, Kment 2013 Surf. Coat. Technol. 232 376

    [13]

    Oliveira J C, Fernandes F, Ferreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140

    [14]

    Čapek J, Hla M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301

    [15]

    Aijaz A, Lundin D, Larsson P, Helmersson U 2010 Surf. Coat. Technol. 204 2165

    [16]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, October 8-12, 2011 p21

    [17]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [18]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [19]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695. 1 2014-06 (in Chinese) [吴忠振, 潘锋, 肖舒 2014 中国专利 201410268695. 1 2014-06]

    [20]

    Fu Q X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [付强新 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Duan W Z 2010 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [22]

    Guan K Z, Li Y Q 1986 Vacuum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [23]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 17 175201 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 17 175201]

    [24]

    Ehiasarian A P 2010 Pure Appl. Chem. 82 1247

    [25]

    Anders A 2008 Appl. Phys. Lett. 92 201501

    [26]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu R K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178

    [27]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 18 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 18 185207]

    [28]

    Li C W 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [李春伟 2014 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [29]

    Luo Q, Yang S, Cooke K E 2013 Surf. Coat. Technol. 236 13

    [30]

    Paulitsch J, Schenkel M, Zufra T, Mayrhofer P H, Mnz W D 2010 Thin Solid Films 518 5558

  • [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Shimizu T, Villamayor M, Lundin D, Helmersson U 2016 J. Phys. D: Appl. Phys. 49 065202

    [3]

    Yang Y, Zhou X, Liu J X, Anders A 2016 Appl. Phys. Lett. 108 034101

    [4]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [5]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [8]

    Wei S, Tian X B, Gong C Z 2013 Vacuum 50 6 (in Chinese) [魏松, 田修波, 巩春志 2013 真空 50 6]

    [9]

    Lin J, Moore J J, Sproul W D, Mishra B, Rees J A, Wu Z 2009 Surf. Coat. Technol. 203 3676

    [10]

    Qin X, Ke P, Wang A, Kim K H 2013 Surf. Coat. Technol. 228 275

    [11]

    Holtzer N, Antonin O, Minea T, Marnieros S, Bouchier D 2014 Surf. Coat. Technol. 250 32

    [12]

    Olejnček J, Hubička Z, Kment 2013 Surf. Coat. Technol. 232 376

    [13]

    Oliveira J C, Fernandes F, Ferreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140

    [14]

    Čapek J, Hla M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301

    [15]

    Aijaz A, Lundin D, Larsson P, Helmersson U 2010 Surf. Coat. Technol. 204 2165

    [16]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, October 8-12, 2011 p21

    [17]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [18]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [19]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695. 1 2014-06 (in Chinese) [吴忠振, 潘锋, 肖舒 2014 中国专利 201410268695. 1 2014-06]

    [20]

    Fu Q X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [付强新 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Duan W Z 2010 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [22]

    Guan K Z, Li Y Q 1986 Vacuum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [23]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 17 175201 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 17 175201]

    [24]

    Ehiasarian A P 2010 Pure Appl. Chem. 82 1247

    [25]

    Anders A 2008 Appl. Phys. Lett. 92 201501

    [26]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu R K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178

    [27]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 18 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 18 185207]

    [28]

    Li C W 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [李春伟 2014 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [29]

    Luo Q, Yang S, Cooke K E 2013 Surf. Coat. Technol. 236 13

    [30]

    Paulitsch J, Schenkel M, Zufra T, Mayrhofer P H, Mnz W D 2010 Thin Solid Films 518 5558

  • [1] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构. 物理学报, 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [2] 李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 筒形溅射阴极的磁场优化及其高功率放电特性研究. 物理学报, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [3] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性. 物理学报, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [4] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [5] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [6] 汪天龙, 邱清泉, 靖立伟, 张小波. 圆形复合式磁控溅射阴极设计及其放电特性模拟研究. 物理学报, 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [7] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [8] 崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋. 筒内高功率脉冲磁控放电的电磁控制与优化. 物理学报, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [9] 吴忠振, 田修波, 潘锋, Ricky K. Y. Fu, 朱剑豪. 高压耦合高功率脉冲磁控溅射的增强放电效应. 物理学报, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [10] 吴忠振, 田修波, 李春伟, Ricky K. Y. Fu, 潘锋, 朱剑豪. 高功率脉冲磁控溅射的阶段性放电特征. 物理学报, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [11] 张连珠, 孟秀兰, 张素, 高书侠, 赵国明. N2微空心阴极放电特性及其阴极溅射的PIC/MC模拟. 物理学报, 2013, 62(7): 075201. doi: 10.7498/aps.62.075201
    [12] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [13] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性. 物理学报, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [14] 鄂鹏, 段萍, 魏立秋, 白德宇, 江滨浩, 徐殿国. 真空背压对霍尔推力器放电特性影响的实验研究. 物理学报, 2010, 59(12): 8676-8684. doi: 10.7498/aps.59.8676
    [15] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究. 物理学报, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [16] 张欣盟, 田修波, 巩春志, 杨士勤. 约束阴极微弧氧化放电特性研究. 物理学报, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [17] 夏俊峰, 张冶文, 郑飞虎, 雷清泉. 基于类耿氏效应的低密度聚乙烯中空间电荷包行为的模拟仿真. 物理学报, 2010, 59(1): 508-514. doi: 10.7498/aps.59.508
    [18] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究. 物理学报, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [19] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [20] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究. 物理学报, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
计量
  • 文章访问数:  4263
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 修回日期:  2016-06-21
  • 刊出日期:  2016-09-05

筒形高功率脉冲磁控溅射源的开发与放电特性

  • 1. 北京大学深圳研究生院新材料学院, 深圳 518055;
  • 2. 香港城市大学物理与材料科学系, 香港 999077
  • 通信作者: 吴忠振, wuzz@pkusz.edu.cn
    基金项目: 国家自然科学基金(批准号:51301004,U1330110)、深圳科技研究基金(批准号:JCYJ20140903102215536,JCYJ2015 0828093127698)和香港城市大学应用研究基金(批准号:9667122)资助的课题.

摘要: 高功率脉冲磁控溅射以较高的溅射材料离化率及其所带来的高致密度、高结合力和高综合性能成为物理气相沉积领域的新宠,然而其沉积速率低、放电不稳定、溅射材料离化率不一等缺点阻碍了其在工业界的推广和应用. 针对高功率脉冲磁控溅射技术固有的缺陷,我们从靶源出发,设计了一种筒形溅射源,将放电限制在筒形溅射源内部,放电不稳定喷溅出的金属液滴和溅射出来但并未离化的溅射材料无法被负电位的引出栅引出而影响薄膜沉积,只有离化的溅射材料可以引出并沉积形成薄膜,而电子将在筒形溅射源内部反复振荡,和未离化的溅射原子剧烈碰撞,带动进一步离化. 本文通过磁场和放电的模拟发现筒形溅射源内部电子、离子呈花瓣状分布,8条磁铁均匀分布的结构具有最优的靶材利用率. 据此开发的筒形溅射源可在高功率脉冲磁控溅射条件下正常放电,其放电靶电流随靶电压变化呈现出高功率脉冲磁控溅射典型的伏安特性特征,复合电流施加后,有明显的预离化作用. 溅射跑道面积占靶材表面的60%以上,筒形溅射源中心的离子电流波形与靶电流波形类似,但相对靶电流延迟约40 s,数值约为靶电流的1/10. 结果证明,筒形溅射源可有效地应用到高功率脉冲磁控溅射放电中,并成为促进其推广和应用的一种新路径.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回