搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软物质实验方法前沿:单分子操控技术

钱辉 陈虎 严洁

引用本文:
Citation:

软物质实验方法前沿:单分子操控技术

钱辉, 陈虎, 严洁

Frontier of soft matter experimental technique: single molecular manipulation

Qian Hui, Chen Hu, Yan Jie
PDF
导出引用
  • 传统的分子生物学实验方法基本都是系综的方法,测量的信号来自大量的生物分子的平均响应,这不利于得到生物分子的构象转变与功能的动力学细节. 另外,很多生物大分子如细胞骨架蛋白、分子马达等在行使功能的时候都会受到或者产生力的作用,传统的实验方法也难于研究生物分子的力学响应. 最近20年左右发展起来的单分子操控技术可以实现对单个分子的操控,同时测量单个分子在拉力作用下的力学响应. 最为常用的单分子操控技术主要包括光镊、磁镊和原子力显微镜,不同的技术有不同的特点和适用范围. 本文对几种常用的单分子操纵技术的特点,包括物理原理、可以施加的力的范围与精度、可以测量的分子长度范围与精度等做一个系统的介绍. 另外,单分子操控技术在生物大分子如核糖核酸(DNA),脱氧核糖核酸(RNA)和蛋白质的构象转变,相互作用,以及分子马达的功能机理等方面已经取得的丰富成果也给出概括性的介绍. 本文对生物学家系统的了解单分子操控技术和如何应用该技术解决自己的生物问题提供一个有益的参考.
    Biomolecules such as proteins and nucleic acids play critical roles in biological processes. Traditional molecular biological experimental techniques usually measure the properties of an ensemble of molecules. The detected signal originates from the average response of large number of molecules, which often conceals the detailed dynamic information about conformational transitions. In addition, many biomolecules, such as cytoskeleton proteins and molecular motors, are subjected to stretching forces or are able to generate force while playing their biological roles in vivo. It is difficult for traditional experimental methods to be used to study the mechanical response of biomolecules. Single molecule manipulation techniques developed in recent twenty years are capable of manipulating and measuring the property of single molecule. Especially, the force response of single molecule can be measured in high precision. The most popular single molecular manipulation techniques are atomic force microscope, optical tweezers, and magnetic tweezers. Here we introduce the principle, capability of force and extension measurement, spatial and temporal resolutions of these three techniques. Applications of single molecular manipulation techniques in the conformation transitions of DNA, protein, and their interactions, and mechanism of molecular motors will be briefly reviewed. This review will provide a useful reference to biologists to learn and use single molecular manipulation techniques to solve biological problems.
      通信作者: 陈虎, chenhu@xmu.edu.cn;phyyj@nus.edu.cn ; 严洁, chenhu@xmu.edu.cn;phyyj@nus.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474237,11574310)、111计划(批准号:B16029)、中央高校基本科研业务费(批准号:2013121005)和新加坡生物力学研究所新加坡国家研究基金资助的课题.
      Corresponding author: Chen Hu, chenhu@xmu.edu.cn;phyyj@nus.edu.cn ; Yan Jie, chenhu@xmu.edu.cn;phyyj@nus.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474237, 11574310), the 111 Project, China (Grant No. B16029), the Fundamental Research Funds for the Central Universities, China (Grant No. 2013121005), and the National Research Foundation of Singapore through the NRF Investigatorship and the Mechanobiology Institute (to JY).
    [1]

    Lewin B 2004 Genes VIII (Upper Saddle River: Pearson Prentice Hall)

    [2]

    Moore S W, Roca-Cusachs P, Sheetz M P 2010 Dev. Cell 19 194

    [3]

    Fersht A R 1995 Curr. Opin. Struct. Biol. 5 79

    [4]

    SantaLucia J, Hicks D 2004 Annu. Rev. Biophys. Biomol. Struct. 33 415

    [5]

    Visscher K, Block S M 2000 Nat. Cell Biol. 2 718

    [6]

    Zhu C 2014 Ann. Biomed. Eng. 42 388

    [7]

    Bustamante C, Cheng W, Mejia Y X 2011 Cell 144 480

    [8]

    Xie X S, Choi P J, Li G W, Lee N K, Lia G 2008 Annu. Rev. Biophys. 37 417

    [9]

    Bockelmann U 2004 Curr. Opin. Struct. Biol. 14 368

    [10]

    Strick T R, Dessinges M N, Charvin G, Dekker N H, Allemand J F, Bensimon D, Croquette V 2003 Rep. Prog. Phys. 66 1

    [11]

    Wang M D 1999 Curr. Opin. Biotechnol. 10 81

    [12]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [13]

    Huang B, Bates M, Zhuang X 2009 Annu. Rev. Biochem. 78 993

    [14]

    Huang B, Babcock H, Zhuang X 2010 Cell 143 1047

    [15]

    Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507

    [16]

    Weiss S 1999 Science 283 1676

    [17]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [18]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [19]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835

    [20]

    Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D, Caron F 1996 Science 271 792

    [21]

    Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman E J G, Wuite G J L 2015 Nat. Methods 12 47

    [22]

    Fisher T E, Marszalek P E, Fernandez J M 2000 Nat. Struct. Biol. 7 719

    [23]

    Javadi Y, Fernandez J M, Perez-Jimenez R 2013 Physiology 28 9

    [24]

    Liu F, Ouyang Z C 2006 Phys. Rev. E 74 051904

    [25]

    Thomas W E, Vogel V, Sokurenko E 2008 Annu. Rev. Biophys. 37 399

    [26]

    Zhang X, Ma L, Zhang Y 2013 Yale J. Biol. Med. 86 367

    [27]

    Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Annu. Rev. Biochem. 77 205

    [28]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314

    [29]

    Chen H, Chandrasekar S, Sheetz M P, Stossel T P, Nakamura F, Yan J 2013 Sci. Rep. 3 1642

    [30]

    Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517

    [31]

    Chen H, Zhu X, Cong P, Sheetz M P, Nakamura F, Yan J 2011 Biophys. J. 101 1231

    [32]

    Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kber M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408

    [33]

    Lipfert J, Kerssemakers J W J, Jager T, Dekker N H 2010 Nat. Methods 7 977

    [34]

    Lipfert J, Wiggin M, Kerssemakers J W J, Pedaci F, Dekker N H 2011 Nat. Commun. 2 439

    [35]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540

    [36]

    Marko J F, Siggia E D 1995 Macromolecules 28 8759

    [37]

    Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599

    [38]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122

    [39]

    Yan J, Marko J F 2003 Phys. Rev. E 68 011905

    [40]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [41]

    Cao Y, Li H 2011 Langmuir 27 1440

    [42]

    Fernandez J M, Li H 2004 Science 303 1674

    [43]

    Broekmans O D, King G A, Stephens G J, Wuite J G L 2016 Phys. Rev. Lett. 116 258102

    [44]

    Zhang X, Chen H, Le S, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865

    [45]

    Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [46]

    Brower-Toland B, Wang M D 2004 Methods Enzymol. 376 62

    [47]

    Skoko D, Yan J, Johnson R C, Marko J F 2005 Phys. Rev. Lett. 95 208101

    [48]

    Xiao B, Johnson R C, Marko J F 2010 Nucleic Acids Res. 38 6176

    [49]

    Liu Y, Chen H, Kenney L J, Yan J 2010 Genes Dev. 24 339

    [50]

    King G M, Carter A R, Churnside A B, Eberle L S, Perkins T T 2009 Nano Lett. 9 1451

    [51]

    Edwards D T, Faulk J K, Sanders A W, Bull M S, Walder R, LeBlanc M A, Sousa M C, Perkins T T 2015 Nano. Lett. 15 7091

    [52]

    Neupane K, Manuel A P, Woodside M T 2016 Nat. Phys. 12 700

    [53]

    Comstock M J, Ha T, Chemla Y R 2011 Nat. Methods 8 335

    [54]

    Lee M, Kim S H, Hong S C 2010 Proc. Natl. Acad. Sci. USA 107 4985

  • [1]

    Lewin B 2004 Genes VIII (Upper Saddle River: Pearson Prentice Hall)

    [2]

    Moore S W, Roca-Cusachs P, Sheetz M P 2010 Dev. Cell 19 194

    [3]

    Fersht A R 1995 Curr. Opin. Struct. Biol. 5 79

    [4]

    SantaLucia J, Hicks D 2004 Annu. Rev. Biophys. Biomol. Struct. 33 415

    [5]

    Visscher K, Block S M 2000 Nat. Cell Biol. 2 718

    [6]

    Zhu C 2014 Ann. Biomed. Eng. 42 388

    [7]

    Bustamante C, Cheng W, Mejia Y X 2011 Cell 144 480

    [8]

    Xie X S, Choi P J, Li G W, Lee N K, Lia G 2008 Annu. Rev. Biophys. 37 417

    [9]

    Bockelmann U 2004 Curr. Opin. Struct. Biol. 14 368

    [10]

    Strick T R, Dessinges M N, Charvin G, Dekker N H, Allemand J F, Bensimon D, Croquette V 2003 Rep. Prog. Phys. 66 1

    [11]

    Wang M D 1999 Curr. Opin. Biotechnol. 10 81

    [12]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [13]

    Huang B, Bates M, Zhuang X 2009 Annu. Rev. Biochem. 78 993

    [14]

    Huang B, Babcock H, Zhuang X 2010 Cell 143 1047

    [15]

    Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507

    [16]

    Weiss S 1999 Science 283 1676

    [17]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [18]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [19]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835

    [20]

    Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D, Caron F 1996 Science 271 792

    [21]

    Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman E J G, Wuite G J L 2015 Nat. Methods 12 47

    [22]

    Fisher T E, Marszalek P E, Fernandez J M 2000 Nat. Struct. Biol. 7 719

    [23]

    Javadi Y, Fernandez J M, Perez-Jimenez R 2013 Physiology 28 9

    [24]

    Liu F, Ouyang Z C 2006 Phys. Rev. E 74 051904

    [25]

    Thomas W E, Vogel V, Sokurenko E 2008 Annu. Rev. Biophys. 37 399

    [26]

    Zhang X, Ma L, Zhang Y 2013 Yale J. Biol. Med. 86 367

    [27]

    Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Annu. Rev. Biochem. 77 205

    [28]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314

    [29]

    Chen H, Chandrasekar S, Sheetz M P, Stossel T P, Nakamura F, Yan J 2013 Sci. Rep. 3 1642

    [30]

    Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517

    [31]

    Chen H, Zhu X, Cong P, Sheetz M P, Nakamura F, Yan J 2011 Biophys. J. 101 1231

    [32]

    Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kber M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408

    [33]

    Lipfert J, Kerssemakers J W J, Jager T, Dekker N H 2010 Nat. Methods 7 977

    [34]

    Lipfert J, Wiggin M, Kerssemakers J W J, Pedaci F, Dekker N H 2011 Nat. Commun. 2 439

    [35]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540

    [36]

    Marko J F, Siggia E D 1995 Macromolecules 28 8759

    [37]

    Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599

    [38]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122

    [39]

    Yan J, Marko J F 2003 Phys. Rev. E 68 011905

    [40]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [41]

    Cao Y, Li H 2011 Langmuir 27 1440

    [42]

    Fernandez J M, Li H 2004 Science 303 1674

    [43]

    Broekmans O D, King G A, Stephens G J, Wuite J G L 2016 Phys. Rev. Lett. 116 258102

    [44]

    Zhang X, Chen H, Le S, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865

    [45]

    Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [46]

    Brower-Toland B, Wang M D 2004 Methods Enzymol. 376 62

    [47]

    Skoko D, Yan J, Johnson R C, Marko J F 2005 Phys. Rev. Lett. 95 208101

    [48]

    Xiao B, Johnson R C, Marko J F 2010 Nucleic Acids Res. 38 6176

    [49]

    Liu Y, Chen H, Kenney L J, Yan J 2010 Genes Dev. 24 339

    [50]

    King G M, Carter A R, Churnside A B, Eberle L S, Perkins T T 2009 Nano Lett. 9 1451

    [51]

    Edwards D T, Faulk J K, Sanders A W, Bull M S, Walder R, LeBlanc M A, Sousa M C, Perkins T T 2015 Nano. Lett. 15 7091

    [52]

    Neupane K, Manuel A P, Woodside M T 2016 Nat. Phys. 12 700

    [53]

    Comstock M J, Ha T, Chemla Y R 2011 Nat. Methods 8 335

    [54]

    Lee M, Kim S H, Hong S C 2010 Proc. Natl. Acad. Sci. USA 107 4985

  • [1] 陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖. 单分子技术研究T7解旋酶的解旋与换链. 物理学报, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [2] 滕翠娟, 陆越, 马建兵, 李明, 陆颖, 徐春华. 用单分子技术研究Sso7d与DNA的相互作用. 物理学报, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [3] 赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖. 用全内反射瞬逝场照明磁镊研究Bloom解旋G-四联体. 物理学报, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [4] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [5] 张宇微, 颜燕, 农大官, 徐春华, 李明. 磁镊结合DNA发夹的方法在RecA蛋白介导的同源重组机制研究中的潜在应用. 物理学报, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [6] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究. 物理学报, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [7] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [8] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [9] 王爽, 郑海子, 赵振业, 陆越, 徐春华. 全内反射瞬逝场照明高精度磁镊及其在DNA解旋酶研究中的应用. 物理学报, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [10] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [11] 冉诗勇. 谐振势阱中的布朗运动——磁镊实验与模拟. 物理学报, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [12] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [13] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [14] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力. 物理学报, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [15] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [16] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [17] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [18] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [19] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  4526
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-02
  • 修回日期:  2016-08-26
  • 刊出日期:  2016-09-05

软物质实验方法前沿:单分子操控技术

  • 1. 厦门大学物理科学与技术学院, 生物仿生与软物质研究院, 福建省柔性功能材料重点实验室, 厦门 361005;
  • 2. 新加坡国立大学生物力学研究所, 新加坡 117411;
  • 3. 新加坡国立大学物理系, 新加坡 117542;
  • 4. 新加坡国立大学生物影像科学中心, 新加坡 117546
  • 通信作者: 陈虎, chenhu@xmu.edu.cn;phyyj@nus.edu.cn ; 严洁, chenhu@xmu.edu.cn;phyyj@nus.edu.cn
    基金项目: 国家自然科学基金(批准号:11474237,11574310)、111计划(批准号:B16029)、中央高校基本科研业务费(批准号:2013121005)和新加坡生物力学研究所新加坡国家研究基金资助的课题.

摘要: 传统的分子生物学实验方法基本都是系综的方法,测量的信号来自大量的生物分子的平均响应,这不利于得到生物分子的构象转变与功能的动力学细节. 另外,很多生物大分子如细胞骨架蛋白、分子马达等在行使功能的时候都会受到或者产生力的作用,传统的实验方法也难于研究生物分子的力学响应. 最近20年左右发展起来的单分子操控技术可以实现对单个分子的操控,同时测量单个分子在拉力作用下的力学响应. 最为常用的单分子操控技术主要包括光镊、磁镊和原子力显微镜,不同的技术有不同的特点和适用范围. 本文对几种常用的单分子操纵技术的特点,包括物理原理、可以施加的力的范围与精度、可以测量的分子长度范围与精度等做一个系统的介绍. 另外,单分子操控技术在生物大分子如核糖核酸(DNA),脱氧核糖核酸(RNA)和蛋白质的构象转变,相互作用,以及分子马达的功能机理等方面已经取得的丰富成果也给出概括性的介绍. 本文对生物学家系统的了解单分子操控技术和如何应用该技术解决自己的生物问题提供一个有益的参考.

English Abstract

参考文献 (54)

目录

    /

    返回文章
    返回