搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频域信息交换的随机共振研究

刘进军 冷永刚 赖志慧 谭丹

引用本文:
Citation:

基于频域信息交换的随机共振研究

刘进军, 冷永刚, 赖志慧, 谭丹

Stochastic resonance based on frequency information exchange

Liu Jin-Jun, Leng Yong-Gang, Lai Zhi-Hui, Tan Dan
PDF
导出引用
  • 针对经典随机共振检测大参数信号的困难,提出了基于频域信息交换的随机共振方法,并根据相移的单边带信号调制理论阐述了频域信息交换的随机共振机理.为了克服变尺度随机共振采样频比的制约,给出了基于变尺度频域信息交换的随机共振信号检测方法.数值模拟和信号检测性能分析表明,基于变尺度频域信息交换的随机共振方法具有更有效的采样频比,更便于工程实际的应用.
    In the past few decades, stochastic resonance (SR) has attracted considerable attention of researchers due to a curious phenomenon appearing in a nonlinear system:an input weak periodic signal can be amplified and optimized by the assistance of noise. It has been proved that the classical stochastic resonance (CSR) has the adiabatic limit, so the performance of CSR in high-frequency signal detection is restricted in practical engineering. To break the restriction, a number of methods have been suggested, such as re-scaling frequency stochastic resonance (RFSR), parameters normalized stochastic resonance, modulated stochastic resonance, etc. Although the high-frequency signal can be detected by the above methods in specific conditions, there are some problems that restrict their applications in different circumstances. In this paper, a new method, stochastic resonance based on frequency-information exchange (FIESR), is developed to deal with the adiabatic limit of CSR. The mechanism of FIESR is analyzed in detail by the theory of single-side band modulation (SSB) which is based on phase shift. The information in small-parameter frequency domain is swapped with the information of the high-frequency target signal. Then the amplitude and phase of the target signal are moved to the small-parameter frequency domain. Consequently the target signal can be enhanced and detected by CSR in small-parameter frequency domain. Besides, a necessary plan, narrow band spectrum exchange, is put forward to diminish the influence of the spectrum leakage of FIESR. It is well known that the RFSR is a method of detecting the practical signal with large-parameter frequency. Through rescaling the time interval of the signal and compressing its frequency according to the scale R, the large-parameter frequency is compressed into a small-parameter frequency. The RFSR has a good performance in mechanical incipient fault diagnosis. However, it has a high sampling ratio limitation. The ratio of sampling frequency to target signal frequency is more than 50. To overcome this weakness of RFSR, frequency-information exchange (FIE) is introduced into RFSR. A new signal detection method based on FIE and RFSR, named F-RFSR, is put forward simultaneously. The flow of F-RFSR consists of three steps. Firstly, the frequency of the original input signal is compressed linearly according to the estimated scale. Then, the frequency information is exchanged between the compressed target signal and the small-parameter signal in the frequency domain. Finally, the CSR is used to amplify and detect the weak target signal processed by re-scaling frequency and FIE. Performance analysis of signal detection and numerical simulation are carried out to demonstrate that F-RFSR has more efficient sampling ratio than RFSR for practical application.
      通信作者: 冷永刚, leng_yg@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51275336)和天津市应用基础与前沿技术研究计划(批准号:15JCZDJC32200)资助的课题.
      Corresponding author: Leng Yong-Gang, leng_yg@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275336), and Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC32200).
    [1]

    Beniz R, Sutera A, Vulpiani A 1981J. Phys. A:Math. Gen. 14 L453

    [2]

    McNamara B, Wiesenfeld K 1989Phys. Rev. A 39 4854

    [3]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998Rev. Mod. Phys. 70 223

    [4]

    Hu G 1994Stochastic Forces and Nonlinear System (Shanghai:Shanghai Science & Technology Education Press) pp219-254(in Chinese)[胡岗1994随机力与非线性系统(上海:上海科技教育出版社)第219–254页]

    [5]

    Bates R, Blyuss O, Zaikin A 2014Phys. Rev. E 89 032716

    [6]

    Yang Y B, Jiang Z P, Xu B H 2009J. Phys. A:Math. Theor. 42 145207

    [7]

    Dylov D V, Fleischer J W 2010Nat. Photon. 4 323

    [8]

    Jha R K, Biswas P K, Chatterji B N 2012IET Image Process. 6 230

    [9]

    Duan F B, Xu B H 2003Int. J. Bifurcat. Chaos 13 411

    [10]

    Hu N Q, Chen M, Wen X S 2003Mech. Syst. Signal Pr. 17 883

    [11]

    Li J M, Chen X F, He Z J 2013Mech. Syst. Signal Pr. 36 240

    [12]

    Wang J, He Q B, Kong F R 2014J. Sound Vib. 333 7401

    [13]

    Shi P M, Ding X J, Han D Y 2014Measurement 47 540

    [14]

    Han D Y, Li P, An S J, Shi P M 2016Mech. Syst. Signal Pr. 70 995

    [15]

    Zhao W L, Wang J, Wang L Z 2013Chaos 23 033117

    [16]

    Berdichevsky V, Gitterman M 1999Phys. Rev. E 60 1494

    [17]

    Jia Y, Yu S N, Li J R 2000Phys. Rev. E 62 1869

    [18]

    Jin Y F 2012Physica A 391 1928

    [19]

    Leng Y G, Leng Y S, Wang T Y, Guo Y 2006J. Sound Vib. 292 788

    [20]

    Leng Y G, Wang T Y, Guo Y, Xu Y G 2007Mech. Syst. Signal Pr. 21 138

    [21]

    Chen M, Hu N Q, Qin G J, An M C 2009Chin. J. Mech. Eng. 45 131(in Chinese)[陈敏, 胡茑庆, 秦国军, 安茂春2009机械工程学报45 131]

    [22]

    Yang D X, Hu Z, Yang Y M 2012Acta Phys. Sin. 61 080501(in Chinese)[杨定新, 胡政, 杨拥民2012物理学报61 080501]

    [23]

    Ye Q H, Huang H N, He X Y, Zhang C H 2003OCEANS 2003 Proceedings San Diego, CA, USA, September 22-26, 2003 p2410

    [24]

    Lin M, Huang Y M 2006Acta Phys. Sin. 55 3277(in Chinese)[林敏, 黄咏梅2006物理学报55 3277]

    [25]

    Tan J Y, Chen X F, Wang J Y, Chen H X 2009Mech. Syst. Signal Pr. 23 811

    [26]

    Yang D X, Hu N Q 2003J. Natl. Univ. Def. Technol. 25 91(in Chinese)[杨定新, 胡茑庆2003国防科技大学学报2591]

    [27]

    Zhai R C, Xie W S 2000Numerical Analysis (Tianjin:Tianjin University Press) pp235-236(in Chinese)[翟瑞彩, 谢伟松2000数值分析(天津:天津大学出版社)第235–236页]

    [28]

    Leng Y G 2011Acta Phys. Sin. 60 020503(in Chinese)[冷永刚2011物理学报60 020503]

  • [1]

    Beniz R, Sutera A, Vulpiani A 1981J. Phys. A:Math. Gen. 14 L453

    [2]

    McNamara B, Wiesenfeld K 1989Phys. Rev. A 39 4854

    [3]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998Rev. Mod. Phys. 70 223

    [4]

    Hu G 1994Stochastic Forces and Nonlinear System (Shanghai:Shanghai Science & Technology Education Press) pp219-254(in Chinese)[胡岗1994随机力与非线性系统(上海:上海科技教育出版社)第219–254页]

    [5]

    Bates R, Blyuss O, Zaikin A 2014Phys. Rev. E 89 032716

    [6]

    Yang Y B, Jiang Z P, Xu B H 2009J. Phys. A:Math. Theor. 42 145207

    [7]

    Dylov D V, Fleischer J W 2010Nat. Photon. 4 323

    [8]

    Jha R K, Biswas P K, Chatterji B N 2012IET Image Process. 6 230

    [9]

    Duan F B, Xu B H 2003Int. J. Bifurcat. Chaos 13 411

    [10]

    Hu N Q, Chen M, Wen X S 2003Mech. Syst. Signal Pr. 17 883

    [11]

    Li J M, Chen X F, He Z J 2013Mech. Syst. Signal Pr. 36 240

    [12]

    Wang J, He Q B, Kong F R 2014J. Sound Vib. 333 7401

    [13]

    Shi P M, Ding X J, Han D Y 2014Measurement 47 540

    [14]

    Han D Y, Li P, An S J, Shi P M 2016Mech. Syst. Signal Pr. 70 995

    [15]

    Zhao W L, Wang J, Wang L Z 2013Chaos 23 033117

    [16]

    Berdichevsky V, Gitterman M 1999Phys. Rev. E 60 1494

    [17]

    Jia Y, Yu S N, Li J R 2000Phys. Rev. E 62 1869

    [18]

    Jin Y F 2012Physica A 391 1928

    [19]

    Leng Y G, Leng Y S, Wang T Y, Guo Y 2006J. Sound Vib. 292 788

    [20]

    Leng Y G, Wang T Y, Guo Y, Xu Y G 2007Mech. Syst. Signal Pr. 21 138

    [21]

    Chen M, Hu N Q, Qin G J, An M C 2009Chin. J. Mech. Eng. 45 131(in Chinese)[陈敏, 胡茑庆, 秦国军, 安茂春2009机械工程学报45 131]

    [22]

    Yang D X, Hu Z, Yang Y M 2012Acta Phys. Sin. 61 080501(in Chinese)[杨定新, 胡政, 杨拥民2012物理学报61 080501]

    [23]

    Ye Q H, Huang H N, He X Y, Zhang C H 2003OCEANS 2003 Proceedings San Diego, CA, USA, September 22-26, 2003 p2410

    [24]

    Lin M, Huang Y M 2006Acta Phys. Sin. 55 3277(in Chinese)[林敏, 黄咏梅2006物理学报55 3277]

    [25]

    Tan J Y, Chen X F, Wang J Y, Chen H X 2009Mech. Syst. Signal Pr. 23 811

    [26]

    Yang D X, Hu N Q 2003J. Natl. Univ. Def. Technol. 25 91(in Chinese)[杨定新, 胡茑庆2003国防科技大学学报2591]

    [27]

    Zhai R C, Xie W S 2000Numerical Analysis (Tianjin:Tianjin University Press) pp235-236(in Chinese)[翟瑞彩, 谢伟松2000数值分析(天津:天津大学出版社)第235–236页]

    [28]

    Leng Y G 2011Acta Phys. Sin. 60 020503(in Chinese)[冷永刚2011物理学报60 020503]

计量
  • 文章访问数:  3468
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-27
  • 修回日期:  2016-08-22
  • 刊出日期:  2016-11-05

基于频域信息交换的随机共振研究

  • 1. 天津大学机械工程学院, 天津 300350;
  • 2. 南昌大学机电工程学院, 南昌 330031
  • 通信作者: 冷永刚, leng_yg@tju.edu.cn
    基金项目: 国家自然科学基金(批准号:51275336)和天津市应用基础与前沿技术研究计划(批准号:15JCZDJC32200)资助的课题.

摘要: 针对经典随机共振检测大参数信号的困难,提出了基于频域信息交换的随机共振方法,并根据相移的单边带信号调制理论阐述了频域信息交换的随机共振机理.为了克服变尺度随机共振采样频比的制约,给出了基于变尺度频域信息交换的随机共振信号检测方法.数值模拟和信号检测性能分析表明,基于变尺度频域信息交换的随机共振方法具有更有效的采样频比,更便于工程实际的应用.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回