搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格振动的超快光谱调控

王建立 郭亮 徐先凡 倪中华 陈云飞

引用本文:
Citation:

晶格振动的超快光谱调控

王建立, 郭亮, 徐先凡, 倪中华, 陈云飞

Manipulation of lattice vibration by ultrafast spectroscopy

Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei
PDF
导出引用
  • 采用飞秒激光抽运脉冲激发了Bi2Te3薄膜频率为1.856 THz的声子相干振动,并用探测光测量得到了其阻尼振动信号.结合Raman光谱,确定该振动为A1g1对称振动模式的相干光学声子.为了实现该模式振动的调控,在抽运光路上安装了脉冲整形器,进而控制生成具有不同时间间隔和能量比的两束脉冲激光.研究表明,当两束脉冲的间隔时间为相干光学声子振动半周期的奇数倍时,调整两束脉冲的能量比值,可以实现A1g1模式振动的完全消除.继而将两束脉冲的能量比值保持不变,得到了振幅随间隔时间的变化曲线,与理论分析符合.结果进一步证实了用超快光谱调控特定晶格振动的可行性,从而为研究材料内部超快能量传递过程提供了有效手段.
    The ultrafast pump-probe spectroscopy allows us to make movies of the dynamics of the carriers and vibrational excitations on the timescales shorter than the typical scattering time. In general, the temporal evolution of the reflectivity change is comprised of the oscillatory and the non-oscillatory components. The former corresponds to the coherent lattice vibration, while the latter is related to the complex cooling process of the hot carriers. To investigate the dynamics of the hot carrier and the lattice vibration, it is necessary to decouple the two parts in the detected signal. Comparatively, the manipulation of the coherent lattice vibration is easier in spite of its super-high frequency and subatomic vibration amplitude. In this work, the behavior of the coherent lattice vibration in Bi2Te3 single crystalline film with a thickness of 100 nm is studied by using the double pump-single probe ultrafast spectroscopy. Firstly, the coherent lattice vibration with the subatomic amplitude and a frequency of about 1.856 THz is simulated by a femtosecond pump pulse, and its damped oscillation signal is detected by the reflectivity change of a probe pulse. Compared with the Raman spectrum, this vibration is confirmed to be the coherent optical phonon with A1g1 symmetric vibration mode. To manipulate this lattice vibration, a pulse shaper is then installed in the pump-beam arm to generate double pump pulses with the different separation times and the intensity ratios. The resulting reflectivity change is found to be a superposition of the pulse train: the oscillation amplitude is enhanced when the separation time is matched to the period of the oscillation; if the separation time is the odd times the half-period of the oscillation, the A1g1 vibration mode can be completely cancelled out after adjusting the intensity ratio. Finally, by maintaining the same intensity ratio, the amplitudes of the oscillation signals after the second pump pulse are measured with different separation times. The results agree well with the theoretical predictions: the amplitude of the oscillation after the second pump pulse shows a cosine function of separation time with a period of about 1080 fs, which is the twice the period of the oscillation illuminated by a single pump pulse. This work suggests that the lattice vibration can be optically manipulated, thus provides an effective way to disentangle the lifetimes of the phonons and the interactions with the excited carriers in the ultrafast energy relaxation process in semiconductor, which is extremely important for a number of interesting phenomena such as the non-thermal melting and the insulator-to-metal transition.
      通信作者: 王建立, wangjianli@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51476033)资助的课题.
      Corresponding author: Wang Jian-Li, wangjianli@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51476033).
    [1]

    Binning G, Rohrer H 1983 Surf. Sci. 126 236

    [2]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese)[田艳, 黄丽, 罗懋康2013物理学报62 050502]

    [3]

    Kittle C 1996 Introduction to Solid State Physics(New York:John Wiley) pp107-108

    [4]

    Timoshenko S, Young D H, Weaver W 1974 Vibration Problems in Engineering(New York:John Wiley) pp30-61

    [5]

    Zhao X H, Ma F, Wu Y S, Zhang J P, Ai X C 2008 Acta Phys. Sin. 57 298 (in Chinese)[赵晓辉, 马菲, 吴义室, 张建平, 艾希成2008物理学报57 298]

    [6]

    Maznev A A, Hofmann F, Jandl A, Esfarjani K, Bulsara M T, Fitzgerald E A, Chen G, Nelson K A 2013 Appl. Phys. Lett. 102 041901

    [7]

    Hsieh C S, Bakker H J, Piatkowski L, Bonn M 2014 J. Phys. Chem. C 118 20875

    [8]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001

    [9]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203

    [10]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434

    [11]

    Weiner A M, Leaird D E, Wiederrecht G P, Nelson K A 1990 Science 247 1317

    [12]

    Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus G, Dresselhaus M S 1992 Phys. Rev. B 45 768

    [13]

    Cheng T K, Vidal J, Zeiger H J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett. 59 1923

    [14]

    Stevens T E, Kuhl J, Merlin R 2002 Phys. Rev. B 65 144304

    [15]

    Riffe D M, Sabbah A J 2007 Phys. Rev. B 76 085207

    [16]

    DeCamp M F, Reis D A, Bucksbaum P H, Merlin R 2001 Phys. Rev. B 64 092301

    [17]

    Cho G C, Ktt W, Kurz H 1990 Phys. Rev. Lett. 65 764

    [18]

    Wu A Q, Xu X F, Venkatasubramanian R 2008 Appl. Phys. Lett. 92 011108

    [19]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [20]

    Hase M, Kitajima M, Constantinescu A M, Petek H 2003 Nature 426 51

    [21]

    Ishioka K, Hase M, Kitajima M, Wirtz L, Rubio A, Petek H 2008 Phys. Rev. B 77 121402

    [22]

    Lim Y S, Yee K J, Kim J H, Hároz E H, Shaver J, Junichiro K, Doorn S K, Hauge R H, Smalley R E 2006 Nano Lett. 6 2696

    [23]

    Hase M, Ishioka K, Kitajima M, Ushida K, Hishita S 2000 Appl. Phys. Lett. 76 1258

    [24]

    Wu A Q, Xu X 2007 Appl. Phys. Lett. 90 251111

    [25]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [26]

    Wang J L, Guo L, Ling C, Song Y M, Xu X F, Ni Z H, Chen Y F 2016 Phys. Rev. B 93 155306

    [27]

    Kumar N, Ruzicka B A, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306

    [28]

    Wang J L, Guo L, Liu C H, Xu X F, Chen Y F 2015 Appl. Phys. Lett. 107 063107

    [29]

    Wang Y G, Guo L, Xu X F 2013 Phys. Rev. B 88 064307

    [30]

    Richter W, Köhler H, Becker C R 1977 Phys. Stat. Sol.(b) 84 619

    [31]

    Min L X, Dwayne Miller R J 1990 Appl. Phys. Lett. 56 524

    [32]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P, Gauthier J C, Hulin D 2001 Nature 410 65

  • [1]

    Binning G, Rohrer H 1983 Surf. Sci. 126 236

    [2]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese)[田艳, 黄丽, 罗懋康2013物理学报62 050502]

    [3]

    Kittle C 1996 Introduction to Solid State Physics(New York:John Wiley) pp107-108

    [4]

    Timoshenko S, Young D H, Weaver W 1974 Vibration Problems in Engineering(New York:John Wiley) pp30-61

    [5]

    Zhao X H, Ma F, Wu Y S, Zhang J P, Ai X C 2008 Acta Phys. Sin. 57 298 (in Chinese)[赵晓辉, 马菲, 吴义室, 张建平, 艾希成2008物理学报57 298]

    [6]

    Maznev A A, Hofmann F, Jandl A, Esfarjani K, Bulsara M T, Fitzgerald E A, Chen G, Nelson K A 2013 Appl. Phys. Lett. 102 041901

    [7]

    Hsieh C S, Bakker H J, Piatkowski L, Bonn M 2014 J. Phys. Chem. C 118 20875

    [8]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001

    [9]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203

    [10]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434

    [11]

    Weiner A M, Leaird D E, Wiederrecht G P, Nelson K A 1990 Science 247 1317

    [12]

    Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus G, Dresselhaus M S 1992 Phys. Rev. B 45 768

    [13]

    Cheng T K, Vidal J, Zeiger H J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett. 59 1923

    [14]

    Stevens T E, Kuhl J, Merlin R 2002 Phys. Rev. B 65 144304

    [15]

    Riffe D M, Sabbah A J 2007 Phys. Rev. B 76 085207

    [16]

    DeCamp M F, Reis D A, Bucksbaum P H, Merlin R 2001 Phys. Rev. B 64 092301

    [17]

    Cho G C, Ktt W, Kurz H 1990 Phys. Rev. Lett. 65 764

    [18]

    Wu A Q, Xu X F, Venkatasubramanian R 2008 Appl. Phys. Lett. 92 011108

    [19]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [20]

    Hase M, Kitajima M, Constantinescu A M, Petek H 2003 Nature 426 51

    [21]

    Ishioka K, Hase M, Kitajima M, Wirtz L, Rubio A, Petek H 2008 Phys. Rev. B 77 121402

    [22]

    Lim Y S, Yee K J, Kim J H, Hároz E H, Shaver J, Junichiro K, Doorn S K, Hauge R H, Smalley R E 2006 Nano Lett. 6 2696

    [23]

    Hase M, Ishioka K, Kitajima M, Ushida K, Hishita S 2000 Appl. Phys. Lett. 76 1258

    [24]

    Wu A Q, Xu X 2007 Appl. Phys. Lett. 90 251111

    [25]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [26]

    Wang J L, Guo L, Ling C, Song Y M, Xu X F, Ni Z H, Chen Y F 2016 Phys. Rev. B 93 155306

    [27]

    Kumar N, Ruzicka B A, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306

    [28]

    Wang J L, Guo L, Liu C H, Xu X F, Chen Y F 2015 Appl. Phys. Lett. 107 063107

    [29]

    Wang Y G, Guo L, Xu X F 2013 Phys. Rev. B 88 064307

    [30]

    Richter W, Köhler H, Becker C R 1977 Phys. Stat. Sol.(b) 84 619

    [31]

    Min L X, Dwayne Miller R J 1990 Appl. Phys. Lett. 56 524

    [32]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P, Gauthier J C, Hulin D 2001 Nature 410 65

  • [1] 刘海平, 张世乘, 门玲鸰, 何振强. 面向激光跟踪仪宽频隔振器的理论分析及试验评价. 物理学报, 2022, 71(16): 160701. doi: 10.7498/aps.71.20220307
    [2] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [3] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [4] 吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君. 基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生. 物理学报, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [5] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [6] 王晓旭, 赵琉涛, 成海霞, 钱萍. La3Co29-xFexSi4B10的择优占位、电子结构和晶格振动性质的理论研究. 物理学报, 2016, 65(5): 057103. doi: 10.7498/aps.65.057103
    [7] 卞华栋, 戴晔, 叶俊毅, 宋娟, 阎晓娜, 马国宏. 紧聚焦飞秒脉冲与石英玻璃相互作用过程中的电子动量弛豫时间研究. 物理学报, 2014, 63(7): 074209. doi: 10.7498/aps.63.074209
    [8] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [9] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [10] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [11] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [12] 郑炳松, 孙彦乾, 陈俞, 马景龙, 李英骏. 利用单飞秒激光脉冲驱动类氖钛X射线激光的研究. 物理学报, 2010, 59(10): 7020-7026. doi: 10.7498/aps.59.7020
    [13] 胡德志. 脉冲激光烧蚀中电声弛豫时间的确定. 物理学报, 2009, 58(2): 1077-1082. doi: 10.7498/aps.58.1077
    [14] 赵红敏, 王鹿霞. 异质结中桥分子电子转移的飞秒激光控制研究. 物理学报, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [15] 韩海年, 张 炜, 佟娟娟, 王延辉, 王 鹏, 魏志义, 李德华, 沈乃澂, 聂玉昕, 董太乾. 利用锁相环和TV-Rb钟控制飞秒激光脉冲的载波包络相移. 物理学报, 2007, 56(1): 291-295. doi: 10.7498/aps.56.291
    [16] 王兆华, 魏志义, 张 杰. 飞秒激光脉冲的频率分辨偏振光学开关法测量研究. 物理学报, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [17] 程光华, 王屹山, 刘 青, 赵 卫, 陈国夫. 用飞秒激光脉冲在PMMA内页面式写入三维光存储的研究. 物理学报, 2004, 53(2): 436-440. doi: 10.7498/aps.53.436
    [18] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位. 物理学报, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [19] 王兆华, 魏志义, 滕 浩, 王 鹏, 张 杰. 飞秒激光脉冲的谐波频率分辨光学开关法测量研究. 物理学报, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
    [20] 魏建华, 解士杰, 梅良模. 金属卤化物中的晶格振动. 物理学报, 2000, 49(10): 2027-2032. doi: 10.7498/aps.49.2027
计量
  • 文章访问数:  2951
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-10-13
  • 刊出日期:  2017-01-05

晶格振动的超快光谱调控

  • 1. 东南大学机械工程学院, 江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189;
  • 2. 普渡大学机械工程学院, 西拉法叶 47907
  • 通信作者: 王建立, wangjianli@seu.edu.cn
    基金项目: 国家自然科学基金(批准号:51476033)资助的课题.

摘要: 采用飞秒激光抽运脉冲激发了Bi2Te3薄膜频率为1.856 THz的声子相干振动,并用探测光测量得到了其阻尼振动信号.结合Raman光谱,确定该振动为A1g1对称振动模式的相干光学声子.为了实现该模式振动的调控,在抽运光路上安装了脉冲整形器,进而控制生成具有不同时间间隔和能量比的两束脉冲激光.研究表明,当两束脉冲的间隔时间为相干光学声子振动半周期的奇数倍时,调整两束脉冲的能量比值,可以实现A1g1模式振动的完全消除.继而将两束脉冲的能量比值保持不变,得到了振幅随间隔时间的变化曲线,与理论分析符合.结果进一步证实了用超快光谱调控特定晶格振动的可行性,从而为研究材料内部超快能量传递过程提供了有效手段.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回