搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期数N不同的(Ce0.8SmO2-)/YSZ)N超晶格薄膜的阻抗性质

贾晓静 苏海莹 刘华艳 许彦彬 康振峰 丁铁柱

引用本文:
Citation:

周期数N不同的(Ce0.8SmO2-)/YSZ)N超晶格薄膜的阻抗性质

贾晓静, 苏海莹, 刘华艳, 许彦彬, 康振峰, 丁铁柱

Fabrications and electrochemical properties of superlattice(Ce0.8SmO2-)/YSZ)N electrolyte films

Jia Xiao-Jing, Su Hai-Ying, Liu Hua-Yan, Xu Yan-Bin, Kang Zhen-Feng, Ding Tie-Zhu
PDF
导出引用
  • 采用脉冲激光溅射技术,在MgO单晶片衬底上,以SrTiO3作为缓冲层,交替沉积Ce0.8Sm0.2O2-(SDC)和8 mol% Y2O3:ZrO2(YSZ),制备了不同周期数的(SDC/YSZ)N超晶格电解质薄膜.利用扫描电子显微镜,X射线衍射和交流阻抗对其形貌、相结构和电学性能进行了表征.研究结果表明,薄膜具有优良的超晶格结构,层与层间的界面清晰.阻抗分析表明,周期数越多的样品显示出很小的活化能(约0.768 eV).该结果表明:周期数越多的SDC/YSZ超晶格是更为理想的低温固体氧化物燃料电池电解质.
    The growing demand for the energy conversion and storage of miniaturized system has promoted extensive researches aiming at fabricating solid-state ionic devices in thin-film form. Recent developments in the field of thin-film growth technologies have controlled the films at an atomic level of deposited layers, thus opening new perspectives in the field of engineering of multilayers and heterostructures based on complex oxides. This work focuses on the characterizations of the low-temperature properties of Ce0.8Sm0.2O2-/Y2O3:ZrO2(SDC/YSZ)N superlattice films.(SDC/YSZ)N superlattice electrolytic films with various periods(N=4, 6, 10 and 20) are fabricated on monocrystal MgO substrates by the pulsed laser sputtering method. Here, SiTrO3(STO) is used as a buffer layer, SDC and YSZ are deposited alternately in the whole process. The total thickness values of samples are all fixed at 400 nm no matter how many periods the samples have. The surface morphologies, phase structures and electric properties of the as-deposited samples are characterized by scanning electron microscopy(SEM), X-ray diffraction and alternating current(AC) impedance spectroscopy. It is indicated that the films have excellent superlattice structures after STO has been used as a buffer layer and the substrate temperature has heated to 700℃. The interface between two layers are clearly observed by SEM. Moreover, neither cracks nor snaps are found at the interface. The grains uniformly grow on the surfaces of films and are arranged into cylinder structures, leading to compact films. Through AC impedance analysis, the samples which have more periods exhibit smaller activation energies. With increasing the number of interfaces, the activation energy of film decreases whereas the ionic conductivity increases. When the number of periods reaches 20, the activation energy is measured to be approximately 0.768 eV. The conductivity enhancement of(SDC/YSZ)N superlattice electrolyte film can be attributed to the large lattice mismatch near the interface between two different layers. That is to say, the interface between the highly dissimilar structures stabilizes a disordered oxygen sublattice with an increased number of oxygen vacancies, which promotes oxygen diffusion to increase the ionic conductivity of sample. Furthermore, the ionic conductivity of the(SDC/YSZ)20 film with a thickness ratio of m SDC: YSZ of 2:1 is much higher than that of the film witha thickness ratio of 1:1. Finally, it is noted that the STO buffer layer provides the proper lattice match for CeO2, inducing the good epitxial growth of superlattice electrolyte film(SDC/YSZ)20. And the conductivity enhancement could be attributed to the increase of SDC thickness in a bilayer. Therefore,(SDC/YSZ)20 superlattice electrolyte film is more ideal low-temperature fuel cell electrolyte material due to higher ionic conductivity.
      通信作者: 丁铁柱, pytzding@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11264025)资助的课题.
      Corresponding author: Ding Tie-Zhu, pytzding@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11264025).
    [1]

    Nesaraj A S 2010 J. Sci. Ind. Res. 69 169

    [2]

    Steele B C H, Heinzel A 2001 Nature 414 345

    [3]

    Brandon N P, Skinner S, Steele B C H 2003 Annu. Rev. Mater. Res. 33 183

    [4]

    Xin X S, L Z, Huang X Q, Sha X Q, Zhang Y H, Chen K F, Ai N, Zhu R B, Su W H 2006 J. Power Sources 160 1221

    [5]

    Dong Y C, Li D F, Feng X Y, Dong X F, Hampshire S 2013 RSC Adv. 3 17395

    [6]

    OhtomoA, Hwang H Y 2004 Nature 427 423

    [7]

    Sata N, Eberman K, Eberl K, Maier J 2000 Nature 408 946

    [8]

    Meng X 2010 M. S. Thesis(Dalian:Dalian University of Technology)(in Chinese)[孟昕2010(硕士学位论文大连:大连理工大学)]

    [9]

    Lin Y, Wu Z, Chen X, Huang D X, Chen X H, Hor P, Liu S W, Jacobson A, Chen C L 2003 IEEE Trans. Appl. Supercon. 13 2825

    [10]

    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook S J, Santamaria J 2008 Science 321 676

    [11]

    Liu H Y, Fan Y, Kang Z F, Xu Y B, Bo Q R, Ding T Z 2015 Acta Phys. Sin. 64 236801

    [12]

    Song H Z, Wang H B, Zha S W, Peng D K, Meng G Y 2003 Solid State Ionics 156 249

    [13]

    Peters A, korte C, Hesse D, Zakharov N, Janek J 2007 Solid State Ionics 178 67

  • [1]

    Nesaraj A S 2010 J. Sci. Ind. Res. 69 169

    [2]

    Steele B C H, Heinzel A 2001 Nature 414 345

    [3]

    Brandon N P, Skinner S, Steele B C H 2003 Annu. Rev. Mater. Res. 33 183

    [4]

    Xin X S, L Z, Huang X Q, Sha X Q, Zhang Y H, Chen K F, Ai N, Zhu R B, Su W H 2006 J. Power Sources 160 1221

    [5]

    Dong Y C, Li D F, Feng X Y, Dong X F, Hampshire S 2013 RSC Adv. 3 17395

    [6]

    OhtomoA, Hwang H Y 2004 Nature 427 423

    [7]

    Sata N, Eberman K, Eberl K, Maier J 2000 Nature 408 946

    [8]

    Meng X 2010 M. S. Thesis(Dalian:Dalian University of Technology)(in Chinese)[孟昕2010(硕士学位论文大连:大连理工大学)]

    [9]

    Lin Y, Wu Z, Chen X, Huang D X, Chen X H, Hor P, Liu S W, Jacobson A, Chen C L 2003 IEEE Trans. Appl. Supercon. 13 2825

    [10]

    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook S J, Santamaria J 2008 Science 321 676

    [11]

    Liu H Y, Fan Y, Kang Z F, Xu Y B, Bo Q R, Ding T Z 2015 Acta Phys. Sin. 64 236801

    [12]

    Song H Z, Wang H B, Zha S W, Peng D K, Meng G Y 2003 Solid State Ionics 156 249

    [13]

    Peters A, korte C, Hesse D, Zakharov N, Janek J 2007 Solid State Ionics 178 67

  • [1] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [3] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究. 物理学报, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [4] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [5] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [6] 陈云云, 郑改革, 顾芳, 李振华. 尘埃粒子电势对等离子体电导率的影响. 物理学报, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [7] 潘佳奇, 朱承泉, 李育仁, 兰伟, 苏庆, 刘雪芹, 谢二庆. 非化学计量比靶材溅射制备Cu-Al-O薄膜的光学电学性质研究. 物理学报, 2011, 60(11): 117307. doi: 10.7498/aps.60.117307
    [8] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [9] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [10] 朱晖文, 姜平, 王顺利, 毛凌峰, 唐为华. (La0.7Sr0.3MnO3 )m(BiFeO3)n 超晶格结构的导电机理. 物理学报, 2010, 59(8): 5710-5714. doi: 10.7498/aps.59.5710
    [11] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [12] 王君伟, 张勇, 姜平, 唐为华. (La0.7Sr0.3MnO3)m(BiFeO3)n超晶格间隔的La0.7Sr0.3MnO3三明治结构制备及表征. 物理学报, 2009, 58(6): 4199-4204. doi: 10.7498/aps.58.4199
    [13] 杨仕娥, 文黎巍, 陈永生, 汪昌州, 谷锦华, 郜小勇, 卢景霄. 衬底温度和硼掺杂对p型氢化微晶硅薄膜结构和电学特性的影响. 物理学报, 2008, 57(8): 5176-5181. doi: 10.7498/aps.57.5176
    [14] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [15] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [16] 王佩怡, 杨 春, 李来才, 李言荣. SrTiO3薄膜生长初期Sr,Ti,O原子分子反应机理的理论研究. 物理学报, 2008, 57(4): 2340-2346. doi: 10.7498/aps.57.2340
    [17] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [18] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [19] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [20] 余云鹏, 林璇英, 林舜辉, 黄 锐. 光照和偏压对微晶硅薄膜室温电导的影响. 物理学报, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
计量
  • 文章访问数:  4813
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-10-10
  • 刊出日期:  2017-01-05

/

返回文章
返回