搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善

程静云 康朝阳 宗海涛 曹国华 李明

引用本文:
Citation:

Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善

程静云, 康朝阳, 宗海涛, 曹国华, 李明

Structural and photoelectrical properties of AZO thin films improved by Ag buffer layers

Cheng Jing-Yun, Kang Chao-Yang, Zong Hai-Tao, Cao Guo-Hua, Li Ming
PDF
导出引用
  • 在室温条件下,采用射频磁控溅射法在玻璃基底上制备出了一系列高质量的AZO薄膜和不同Ag缓冲层厚度的AZO/Ag/AZO复合薄膜.利用X射线衍射和原子力显微镜分别对薄膜的物相和表面形貌进行了表征;利用霍尔效应测试仪和紫外-可见光分光光度计等实验技术对薄膜的光电性能进行了研究.实验结果表明,Ag缓冲层厚度对AZO薄膜的晶体结构和光电性能影响较大.当Ag层厚度为10 nm时,AZO(30 nm)/Ag(10 nm)/AZO(30 nm)薄膜拥有最优品质因子,为1.59 10-1-1,方块电阻为0.75/□,可见光区平均透过率为84.2%.另外,薄膜电阻随温度的变化趋势呈现金属电阻随温度的变化特性,光电热稳定性较好.
    In order to obtain more excellent photoelectric properties of transparent conductive film, a series of high-quality AZO thin films and AZO/Ag/AZO thin films with various thickness values of Ag buffer layers are prepared on glass substrates by the radio frequency magnetron sputtering method at room temperature. The phase and surface morphologies of films are characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The technology of Hall effect measurement and ultraviolet, visible spectrophotometer are employed to investigate the photoelectric properties of films. The electrical properties (including sheet resistance, sheet concentration and mobility) of films are also determined by using non isothermal technique to explore their thermal stability performances. The results indicate that the thickness values of Ag buffer layers have a large influence on the crystalline structures and photoelectric properties of AZO thin films. The XRD results show that with the increase of the thickness of Ag, the diffraction peak of Ag (111) is gradually enhanced, the ZnO (002) diffraction peak is gradually weakened, and the preferred orientation of ZnO (002) crystal plane is weakened. AFM test indicates that the change of Ag layer thickness has a great influence on the surface growth mode of the upper layer AZO thin film. When the Ag layer thickness is less than 5 nm, AZO thin film surface is rough and the grain size is smaller. When the Ag layer thickness is larger than 10 nm, the continuous surfaces of multilayer films begin to be shaped, directly affecte the photoelectric properties of the films. Hall effect measurement and transmittance test show that with the increase of Ag layer thickness, the transmission of AZO/Ag/AZO multilayer film gradually decreases, and also the resistance gradually decreases. When the thickness of Ag layer is 10 nm, AZO(30 nm)/Ag(10 nm)/AZO(30 nm) thin film gains a best figure of merit of 1.5910-1 -1 an average transmittance of 84.2% and a sheet resistance of 0.75 /sq. Hall effect measurement versus temperature indicates that AZO film without an Ag layer proves to be subjecte to the regular change of semiconductor resistance with temperature. When adding an Ag layer, the trend of the relationship of resistance with temperature presentes the characteristic of that metal resistance relating to temperature. Moreover, the sheet concentration of AZO with Ag layer is higher than that of AZO. The highest sheet concentration and the excellent thermal stability are obtained on AZO/Ag (10 nm)/AZO. The changes of the mobility of AZO under different temperatures turn out to be poorly stable. However, when adding an Ag layer, the better stability of AZO/Ag/AZO can be obtained. In conclusion, the photoelectric properties of films own excellent thermal stabilities with optimum thickness of Ag layer.
    [1]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [2]

    Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H 2006 J. Appl. Phys. 45 4303

    [3]

    Park S H K, Hwang C S, Ryu M, Yang S, Byun C, Shin J, Lee J I, Lee K, Oh M S, Im S 2009 Adv. Mater. 21 678

    [4]

    Chen Z Q, Liu H M, Liu Y P, Chen W, Luo Z Q, Hu X W 2009 Acta Phys. Sin. 58 4260 (in Chinese)[陈兆权, 刘海明, 刘玉萍, 陈伟, 罗志清, 胡希伟2009物理学报58 4260]

    [5]

    Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103 (in Chinese)[陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良2014物理学报63 098103]

    [6]

    Le Q T, Nuesch F, Rothberg L J, Forsythe E W, Gao Y 1999 Appl. Phys. Lett. 75 1357

    [7]

    Lee C G, Kim S J, Kim H H, Lee W W 2007 J. Korean. Phys. Soc. 50 596

    [8]

    Fernandes G E, Lee D J, Kim J H, Kim K B, Xu J 2013 J. Mater. Sci. 48 2536

    [9]

    Thanka R S, Subramanian B, Nanda K A K, Jayachandran M, Ramachandra R M S 2014 J. Alloys Compd. 584 611

    [10]

    Wang F, Wu M Z, Wang Y Y, Yu Y M, Wu X M, Zhuge L J 2013 Vacuum 89 127

    [11]

    Li F S, Zhang Y Z, Wu C X, Lin Z X, Zhang B B, Guo T L 2012 Vacuum 86 1895

    [12]

    Sahu D R, Lin S Y, Huang J L 2007 Sol. Energy Mater. Sol. Cells 91 851

    [13]

    Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf. Sci. 253 4886

    [14]

    Sahu D R, Lin S Y, Huang J L 2008 Thin Solid Films 516 4728

    [15]

    Crupi I, Boscarino S, Strano V, Mirabella S, Simone F, Terrasi A 2012 Thin Solid Films 520 4432

    [16]

    Wu H W, Yang R Y, Hsiung C M, Chu C H 2012 Thin Solid Films 520 7147

    [17]

    Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Vacuum 106 1

    [18]

    Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Ceram. Int. 40 12847

    [19]

    Miao D G, Jiang S X, Zhao H M, Shang S M, Chen Z M 2014 J. Alloys Compd. 616 26

    [20]

    Dimopoulos T, Radnoczi G, Horvth Z, Brckl H 2012 Thin Solid Films 520 5222

    [21]

    Zhou L, Chen X H, Zhu F, Sun X X, Sun Z 2012 J. Phys. D:Appl. Phys. 45 505103

    [22]

    Gong L, Lu J G, Ye Z Z 2011 Thin Solid Films 519 3870

    [23]

    Sivaramakrishnan K, Alforda T L 2009 Appl. Phys. Lett. 94 052104

    [24]

    Sahu D R, Huang J L 2006 Appl. Surf. Sci. 253 915

  • [1]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [2]

    Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H 2006 J. Appl. Phys. 45 4303

    [3]

    Park S H K, Hwang C S, Ryu M, Yang S, Byun C, Shin J, Lee J I, Lee K, Oh M S, Im S 2009 Adv. Mater. 21 678

    [4]

    Chen Z Q, Liu H M, Liu Y P, Chen W, Luo Z Q, Hu X W 2009 Acta Phys. Sin. 58 4260 (in Chinese)[陈兆权, 刘海明, 刘玉萍, 陈伟, 罗志清, 胡希伟2009物理学报58 4260]

    [5]

    Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103 (in Chinese)[陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良2014物理学报63 098103]

    [6]

    Le Q T, Nuesch F, Rothberg L J, Forsythe E W, Gao Y 1999 Appl. Phys. Lett. 75 1357

    [7]

    Lee C G, Kim S J, Kim H H, Lee W W 2007 J. Korean. Phys. Soc. 50 596

    [8]

    Fernandes G E, Lee D J, Kim J H, Kim K B, Xu J 2013 J. Mater. Sci. 48 2536

    [9]

    Thanka R S, Subramanian B, Nanda K A K, Jayachandran M, Ramachandra R M S 2014 J. Alloys Compd. 584 611

    [10]

    Wang F, Wu M Z, Wang Y Y, Yu Y M, Wu X M, Zhuge L J 2013 Vacuum 89 127

    [11]

    Li F S, Zhang Y Z, Wu C X, Lin Z X, Zhang B B, Guo T L 2012 Vacuum 86 1895

    [12]

    Sahu D R, Lin S Y, Huang J L 2007 Sol. Energy Mater. Sol. Cells 91 851

    [13]

    Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf. Sci. 253 4886

    [14]

    Sahu D R, Lin S Y, Huang J L 2008 Thin Solid Films 516 4728

    [15]

    Crupi I, Boscarino S, Strano V, Mirabella S, Simone F, Terrasi A 2012 Thin Solid Films 520 4432

    [16]

    Wu H W, Yang R Y, Hsiung C M, Chu C H 2012 Thin Solid Films 520 7147

    [17]

    Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Vacuum 106 1

    [18]

    Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Ceram. Int. 40 12847

    [19]

    Miao D G, Jiang S X, Zhao H M, Shang S M, Chen Z M 2014 J. Alloys Compd. 616 26

    [20]

    Dimopoulos T, Radnoczi G, Horvth Z, Brckl H 2012 Thin Solid Films 520 5222

    [21]

    Zhou L, Chen X H, Zhu F, Sun X X, Sun Z 2012 J. Phys. D:Appl. Phys. 45 505103

    [22]

    Gong L, Lu J G, Ye Z Z 2011 Thin Solid Films 519 3870

    [23]

    Sivaramakrishnan K, Alforda T L 2009 Appl. Phys. Lett. 94 052104

    [24]

    Sahu D R, Huang J L 2006 Appl. Surf. Sci. 253 915

  • [1] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [2] 史晓慧, 许珂敬. 溶胶-凝胶-蒸镀法制备高性能FTO薄膜. 物理学报, 2016, 65(13): 138101. doi: 10.7498/aps.65.138101
    [3] 侯清玉, 吕致远, 赵春旺. Nb高掺杂量对锐钛矿TiO2导电和光学性能影响. 物理学报, 2015, 64(1): 017201. doi: 10.7498/aps.64.017201
    [4] 黄立静, 任乃飞, 李保家, 周明. 激光辐照对热退火金属/掺氟二氧化锡透明导电薄膜光电性能的影响. 物理学报, 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [5] 郭红力, 杨焕银, 唐焕芳, 侯海军, 郑勇林, 朱建国. 高压退火对0.65PMN-0.35PT薄膜结构、形貌及电学性能的影响. 物理学报, 2013, 62(13): 130704. doi: 10.7498/aps.62.130704
    [6] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [7] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能. 物理学报, 2011, 60(3): 038203. doi: 10.7498/aps.60.038203
    [8] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [9] 宋雪云, 张俊兵, 曾祥华, 董雅娟. 电极形状对GaN基发光二极管芯片性能的影响. 物理学报, 2010, 59(7): 4989-4995. doi: 10.7498/aps.59.4989
    [10] 谢婧, 黎兵, 李愿杰, 颜璞, 冯良桓, 蔡亚平, 郑家贵, 张静全, 李卫, 武莉莉, 雷智, 曾广根. 射频磁控溅射法制备ZnS多晶薄膜及其性质. 物理学报, 2010, 59(8): 5749-5754. doi: 10.7498/aps.59.5749
    [11] 高立, 张建民. 带隙可调的Al,Mg掺杂ZnO薄膜的制备. 物理学报, 2009, 58(10): 7199-7203. doi: 10.7498/aps.58.7199
    [12] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [13] 王振宁, 江美福, 宁兆元, 朱 丽. 磁控共溅射法制备的Zn2GeO4多晶薄膜结构及其光致发光研究. 物理学报, 2008, 57(10): 6507-6512. doi: 10.7498/aps.57.6507
    [14] 李阳平, 刘正堂, 刘文婷, 闫 峰, 陈 静. GeC薄膜的射频磁控反应溅射制备及性质. 物理学报, 2008, 57(10): 6587-6592. doi: 10.7498/aps.57.6587
    [15] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化. 物理学报, 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [16] 王 楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南 貌, 阮海波. p型ZnO薄膜的制备及特性. 物理学报, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [17] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟. 物理学报, 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [18] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 射频磁控溅射法生长MgxZn1-xO薄膜的结构和光学特性. 物理学报, 2005, 54(9): 4309-4312. doi: 10.7498/aps.54.4309
    [19] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [20] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
计量
  • 文章访问数:  3211
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-26
  • 修回日期:  2016-09-19
  • 刊出日期:  2017-01-20

Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善

    基金项目: 国家自然科学基金(批准号:11140064,11304081,51301062)资助的课题.

摘要: 在室温条件下,采用射频磁控溅射法在玻璃基底上制备出了一系列高质量的AZO薄膜和不同Ag缓冲层厚度的AZO/Ag/AZO复合薄膜.利用X射线衍射和原子力显微镜分别对薄膜的物相和表面形貌进行了表征;利用霍尔效应测试仪和紫外-可见光分光光度计等实验技术对薄膜的光电性能进行了研究.实验结果表明,Ag缓冲层厚度对AZO薄膜的晶体结构和光电性能影响较大.当Ag层厚度为10 nm时,AZO(30 nm)/Ag(10 nm)/AZO(30 nm)薄膜拥有最优品质因子,为1.59 10-1-1,方块电阻为0.75/□,可见光区平均透过率为84.2%.另外,薄膜电阻随温度的变化趋势呈现金属电阻随温度的变化特性,光电热稳定性较好.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回