搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高应变率载荷下铜材料层裂特性研究

席涛 范伟 储根柏 税敏 何卫华 赵永强 辛建婷 谷渝秋

引用本文:
Citation:

超高应变率载荷下铜材料层裂特性研究

席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋

Spall behavior of copper under ultra-high strain rate loading

Xi Tao, Fan Wei, Chu Gen-Bai, Shui Min, He Wei-Hua, Zhao Yong-Qiang, Xin Jian-Ting, Gu Yu-Qiu
PDF
导出引用
  • 超高应变率载荷下材料层裂特性研究对理解极端条件下材料动态破坏特性具有重要意义.利用双温模型结合分子动力学模拟研究分析了超高应变率载荷下铜材料的层裂特性,发现当应变率在109 s-1-1010 s-1内时,铜材料层裂强度在19 GPa附近波动.而当材料发生冲击熔化时,铜的层裂强度下降到14.89 GPa.利用飞秒激光对铜样品靶进行冲击加载,并利用啁啾脉冲频谱干涉技术开展超快诊断,通过单发次实验测量获得了样品靶的自由面粒子速度演化历史,结果未见表征样品层裂的速度回跳和速度周期性振荡信号.结合冲击动力学理论得到样品自由面附近最大加载压强为8.18 GPa,小于超高应变率载荷下铜材料的层裂强度.此外,对回收样品扫描分析发现,铜样品未发生层裂且飞秒激光引起的冲击波对样品表面结构产生了很大影响.
    The spall behavior of copper at ultra-high strain rate is studied by molecular dynamics simulation combined with an experimental analysis of laser ablation of a bulk copper target by femtosecond laser pulses. In the molecular dynamics simulation, two-temperature model is used, shock wave and spallation characteristics of copper shock-loaded by femtosecond laser are analyzed in detail. It is concluded that the evolution of pressure indicates a triangular waveform of the shock wave, and the spall strength of copper is about 19 GPa at strain rates ranging from 109 s-1 to 1010 s-1, while higher pressure would melt the sample and the spall strength decreases to 14.89 GPa. Normally, the spallation is characterized by the sample free-surface undergoing alternately acceleration and deceleration, and the spallation mechanism could be explained by void nucleation, growth, coalescence that leads to the final fracture. An experiment is conducted to achieve high strain rate load on copper. The driving laser has a pulse width of 25 fs and central wavelength of 800 nm, the thickness values of the shocked copper foils are (5025) nm, fabricated by electron beam sputtering deposition onto 180 upm cover slip substrates. The driving laser beam with maximum intensity 5.51013 W/cm2, is focused on the front surface of the copper through the transparent substrate. Movements of the free rear surfaces of the copper foils are detected by chirped pulse spectral interferometry, and the theoretical time resolution is 1.3 ps. As a result, the free surface displacement and velocity evolution profile of the shocked area are obtained in a single measurement, and the results directly show that the maximum free surface velocity is 0.43 km/s and no alternately acceleration and deceleration appears. According to the shock wave relations, the maximum pressure near free-surface is 8.18 GPa. Meanwhile, derived from the velocity evolution profile, the strain rate is 7.3109 s-1. Combining with the above molecular dynamics simulation results, it is concluded that there is no spallation in the copper foil. Furthermore, we recover the sample targets and observe the microstructures by using scanning electron microscope. The copper foils are peeled off, but no spall scab is observed, indicating that the internal stress is between the copper spall strength and the bonding strength of copper foil with the transparent substrate. Ripple structure on copper surface demonstrates the femtosecond pulsed laser has ablated the copper film, and the propagation of the shock in fs regime is sensitive to microscopic defects.
      通信作者: 辛建婷, jane_xjt@126.com;yqgu@caep.ac.cn ; 谷渝秋, jane_xjt@126.com;yqgu@caep.ac.cn
    • 基金项目: 中国工程物理研究院重点实验室基金(批准号:9140C680306150C68298,9140C680305140C68289)资助的课题.
      Corresponding author: Xin Jian-Ting, jane_xjt@126.com;yqgu@caep.ac.cn ; Gu Yu-Qiu, jane_xjt@126.com;yqgu@caep.ac.cn
    • Funds: Project supported by the Science and Technology on Plasma Physics Laboratory,China (Grant Nos.9140C680306150C68298,9140C680305140C68289).
    [1]

    Qian X S 1962 Notes on Physical Mechanics (Beijing:Science Press) p190 (in Chinese)[钱学森 1962 物理力学讲义 (北京:科学出版社) 第190页]

    [2]

    Deng X L 2006 Ph. D. Dissertation (Sichuan:Sichuan University) (in Chinese)[邓小良 2006 博士学位论文(四川:四川大学)]

    [3]

    Gray G T, Maudlin P J, Hull L M, Zuo Q K, Chen S R 2005 J. Fail. Anal. Prev. 5 3

    [4]

    Tan H 2007 Introduction to Experimenal Shock-Wave Phyiscs (Beijing:National Defense Industry Press) p194 (in Chinese)[谭华 2007 实验冲击波物理导引(北京:国防工业出版社) 第194页]

    [5]

    Gray G T, Bourne N T, Millett J C F, Lopez M F, Vecchio K S 2002 AIP Conf. Proc. 620 479

    [6]

    Pedrazas N A, Worthington D L, Dalton D A, Sherek P A, Steuck S P, Quevedo H J, Bernstein A C, Taleff E M, Ditmire T 2012 Mater. Sci. Eng. A 536 117

    [7]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, Rességuier T D, Combis P, Carion J B, Lescoute E 2010 EPJ Web Conf. 10 00014

    [8]

    Moshe E, Eliezer S, Dekel E, Ludmirsky A, Henis Z, Werdiger M, Goldberg I B, Eliaz N, Eliezer D 1998 J. Appl. Phys. 83 8

    [9]

    Dalton D A, Brewer J, Bernstein A C, Grigsby W, Milathianaki D, Jackson E, Adams R, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E, Ditmire T 2007 AIP Conf. Proc. 955 501

    [10]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

    [11]

    Signor L, Rességuier T D, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Eng. 37 887

    [12]

    Hixson R S, Gray G T, Rigg P A, Addessio L B, Yablinsky C A 2004 AIP Conf. Proc. 706 469

    [13]

    Thissell W R, Zurek A K, Macdougall D A, Miller D, Everett R, Geltmacher A, Brooks R, Tonks D 2002 AIP Conf. Proc. 620 475

    [14]

    Tamura H, Kohama T, Kondo K, Yoshida M 2001 J. Appl. Phys. 89 6

    [15]

    Cuq-Lelandais J P, Boustie M, Berthe L, Rességuier T D, Combis P, Colombier J P, Nivard M, Claverie J 2009 Phys. D:Appl. Phys. 42 065402

    [16]

    Ashitkov S I, Komarov P S, Ovchinnikov A V, Struleva E V, Agranat M B 2013 Quantum Elect. 43 3

    [17]

    Belak J 1998 J. Comput.:Aided Mater. 5 193

    [18]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [19]

    Dremov V, Petrovtsev A, Sapozhnikov P, Smirnova M 2006 Phys. Rev. B 74 144110

    [20]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [21]

    Durand O, Soulard L 2012 J. Appl. Phys. 111 044901

    [22]

    Xiang M Z, Hu H B, Chen J, Long Y 2013 Modelling Simul. Mater. Sci. Eng. 21 055005

    [23]

    Shao J L, Wang P, He A M, Zhang R, Qin C S 2013 J. Appl. Phys. 114 173501

    [24]

    Corkum P B, Brunel F, Sherman N K, Rao T S 1988 Phys. Rev. Lett. 61 25

    [25]

    Zhigilei L V, Lin Z B, Ivanov D S 2009 J. Phys. Chem. C 113 11892

    [26]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 39 776

    [27]

    Chen A M, Gao X, Jiang Y F, Ding D J, Liu H, Jin M X 2009 Acta Phys. Sin. 59 10 (in Chinese)[陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星 2009 物理学报 59 10]

    [28]

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 21 (in Chinese)[王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 21]

    [29]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [30]

    Li W X 2003 One-Dimension Nonsteady Flow and Shock Waves (Beijing:National Defense Industry Press) p42 (in Chinese)[李维新 2003 一维不定常流与冲击波] (北京:国防工业出版社) 第42页]

  • [1]

    Qian X S 1962 Notes on Physical Mechanics (Beijing:Science Press) p190 (in Chinese)[钱学森 1962 物理力学讲义 (北京:科学出版社) 第190页]

    [2]

    Deng X L 2006 Ph. D. Dissertation (Sichuan:Sichuan University) (in Chinese)[邓小良 2006 博士学位论文(四川:四川大学)]

    [3]

    Gray G T, Maudlin P J, Hull L M, Zuo Q K, Chen S R 2005 J. Fail. Anal. Prev. 5 3

    [4]

    Tan H 2007 Introduction to Experimenal Shock-Wave Phyiscs (Beijing:National Defense Industry Press) p194 (in Chinese)[谭华 2007 实验冲击波物理导引(北京:国防工业出版社) 第194页]

    [5]

    Gray G T, Bourne N T, Millett J C F, Lopez M F, Vecchio K S 2002 AIP Conf. Proc. 620 479

    [6]

    Pedrazas N A, Worthington D L, Dalton D A, Sherek P A, Steuck S P, Quevedo H J, Bernstein A C, Taleff E M, Ditmire T 2012 Mater. Sci. Eng. A 536 117

    [7]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, Rességuier T D, Combis P, Carion J B, Lescoute E 2010 EPJ Web Conf. 10 00014

    [8]

    Moshe E, Eliezer S, Dekel E, Ludmirsky A, Henis Z, Werdiger M, Goldberg I B, Eliaz N, Eliezer D 1998 J. Appl. Phys. 83 8

    [9]

    Dalton D A, Brewer J, Bernstein A C, Grigsby W, Milathianaki D, Jackson E, Adams R, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E, Ditmire T 2007 AIP Conf. Proc. 955 501

    [10]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

    [11]

    Signor L, Rességuier T D, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Eng. 37 887

    [12]

    Hixson R S, Gray G T, Rigg P A, Addessio L B, Yablinsky C A 2004 AIP Conf. Proc. 706 469

    [13]

    Thissell W R, Zurek A K, Macdougall D A, Miller D, Everett R, Geltmacher A, Brooks R, Tonks D 2002 AIP Conf. Proc. 620 475

    [14]

    Tamura H, Kohama T, Kondo K, Yoshida M 2001 J. Appl. Phys. 89 6

    [15]

    Cuq-Lelandais J P, Boustie M, Berthe L, Rességuier T D, Combis P, Colombier J P, Nivard M, Claverie J 2009 Phys. D:Appl. Phys. 42 065402

    [16]

    Ashitkov S I, Komarov P S, Ovchinnikov A V, Struleva E V, Agranat M B 2013 Quantum Elect. 43 3

    [17]

    Belak J 1998 J. Comput.:Aided Mater. 5 193

    [18]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [19]

    Dremov V, Petrovtsev A, Sapozhnikov P, Smirnova M 2006 Phys. Rev. B 74 144110

    [20]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [21]

    Durand O, Soulard L 2012 J. Appl. Phys. 111 044901

    [22]

    Xiang M Z, Hu H B, Chen J, Long Y 2013 Modelling Simul. Mater. Sci. Eng. 21 055005

    [23]

    Shao J L, Wang P, He A M, Zhang R, Qin C S 2013 J. Appl. Phys. 114 173501

    [24]

    Corkum P B, Brunel F, Sherman N K, Rao T S 1988 Phys. Rev. Lett. 61 25

    [25]

    Zhigilei L V, Lin Z B, Ivanov D S 2009 J. Phys. Chem. C 113 11892

    [26]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 39 776

    [27]

    Chen A M, Gao X, Jiang Y F, Ding D J, Liu H, Jin M X 2009 Acta Phys. Sin. 59 10 (in Chinese)[陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星 2009 物理学报 59 10]

    [28]

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 21 (in Chinese)[王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 21]

    [29]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [30]

    Li W X 2003 One-Dimension Nonsteady Flow and Shock Waves (Beijing:National Defense Industry Press) p42 (in Chinese)[李维新 2003 一维不定常流与冲击波] (北京:国防工业出版社) 第42页]

计量
  • 文章访问数:  2599
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-08
  • 修回日期:  2016-10-19
  • 刊出日期:  2017-02-05

超高应变率载荷下铜材料层裂特性研究

    基金项目: 

    中国工程物理研究院重点实验室基金(批准号:9140C680306150C68298,9140C680305140C68289)资助的课题.

摘要: 超高应变率载荷下材料层裂特性研究对理解极端条件下材料动态破坏特性具有重要意义.利用双温模型结合分子动力学模拟研究分析了超高应变率载荷下铜材料的层裂特性,发现当应变率在109 s-1-1010 s-1内时,铜材料层裂强度在19 GPa附近波动.而当材料发生冲击熔化时,铜的层裂强度下降到14.89 GPa.利用飞秒激光对铜样品靶进行冲击加载,并利用啁啾脉冲频谱干涉技术开展超快诊断,通过单发次实验测量获得了样品靶的自由面粒子速度演化历史,结果未见表征样品层裂的速度回跳和速度周期性振荡信号.结合冲击动力学理论得到样品自由面附近最大加载压强为8.18 GPa,小于超高应变率载荷下铜材料的层裂强度.此外,对回收样品扫描分析发现,铜样品未发生层裂且飞秒激光引起的冲击波对样品表面结构产生了很大影响.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回