搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器

赵勇 蔡露 李雪刚 吕日清

引用本文:
Citation:

基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器

赵勇, 蔡露, 李雪刚, 吕日清

A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature

Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing
PDF
导出引用
  • 提出了一种基于空芯光纤模间干涉原理的环境温度和磁场双参数传感器,为了使光入射进空芯光纤壁中,将空芯光纤与单模光纤错位熔接,传感部分用毛细玻璃管封装,空芯光纤内外分别填充酒精和磁流体.除了光纤材料的热光效应和热膨胀效应外,环境温度变化会引起两种溶液折射率的变化,而磁场变化仅引起空芯光纤外的磁流体折射率变化.理论计算可知空芯光纤壁中可支持多个模式传输并相互干涉,各模式传输相位对内外溶液折射率变化灵敏程度不同.因此,干涉谱中两个含有不同模式成分的波谷,即波谷1和波谷2,它们的漂移可以作为指示信号,通过建立敏感矩阵可同时解调出周围环境温度与磁场的变化.实验中,在2858℃范围内,温度传感灵敏度可达-468 pm/℃;在0169 Oe范围内磁场传感灵敏度可达82 pm/Oe.该传感器具有高灵敏度与高机械强度,并且能够实现温度与磁场的同时测量,有效消除了温度波动对磁场测量信号的干扰.
    In many fields, such as aerospace and marine environmental monitoring, magnetic field measurement is an important link. In recent years, optical fiber magnetic field sensor has received much attention because of its advantages such as small size, electromagnetic immunity, resistance to erosion and capability of remote sensing. In that case, magnetic fluid as a kind of medium between photons and magnetic field is widely used in optical fiber magnetic field sensors. Moreover, in the process of magnetic field measurement, disturbance introduced by temperature fluctuation always happens and brings uncertainty to the sensor. Temperature is also an important parameter in production process and needs to be measured. Therefore, designing a high-sensitive optical fiber sensor for simultaneously measuring magnetic field and temperature is a valuable work. In this paper, we present a high-sensitive hollow core fiber (HCF) interferometer for simultaneously measuring magnetic field and temperature. A segment of HCF filled with alcohol is inserted into single mode fiber (SMF) with 50 m offset at two splicing joints to guide light into the wall of HCF. And then this SMF-HCF-SMF structure is packaged by a capillary tube with full magnetic fluid (MF) inside it. Since the modal field area is large enough, the silica wall can support a series of guiding modes among which modal interference occurs and the interference spectrum can be recorded by an optical spectrum analyzer. Besides thermo-optic effect and thermal expansion effect of silica itself, the RI variations caused by thermo-optic effect of alcohol and MF as well as the magneto-optic effect of MF can also cause the phase difference of the guiding modes to change, thereby rendering interference dips movable. Thus, the sensitivity of temperature or magnetic field is higher than those given in some other previous studies. In addition, it is calculated that the effective RI sensitivities of guiding modes for inside and outside liquid are different because of the peculiar non-circular symmetry structure of HCF. So there is a possibility to find two dips in interference spectrum, which are formed with different modes and have various sensitivities to the variations of temperature and magnetic field. Finally, a sensitivity matrix can be built to demodulate those two parameters simultaneously. Experimental results show that within 20-58℃, the temperature sensitivities are 112 pm/℃ and 468 pm/℃ for dip1 and dip 2 whose magnetic field sensitivities are 37 pm/Oe and 82 pm/Oe within 0-169 Oe, respectively. The proposed sensor possesses high sensitivity and good mechanical strength, and can effectively eliminate the cross disturbances between temperature and magnetic field.
      通信作者: 赵勇, zhaoyong@ise.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61425003,61273059,51607028)资助的课题.
      Corresponding author: Zhao Yong, zhaoyong@ise.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61425003, 61273059, 51607028).
    [1]

    Zhao Y, Hu T 2010Sensors and Detection Technology (Beijing:China Machine Press) p106(in Chinese)[赵勇, 胡涛2010传感器与检测技术(北京:机械工业出版社)第106页]

    [2]

    Zhao Y, L R Q, Wang D, Wang Q 2015IEEE Photon. Techn. Lett. 27 1

    [3]

    Layeghi A, Latifi H, Frazao O 2014 IEEE Photon. Technol. Lett. 2619

    [4]

    Zhao Y, Wu D, L R Q 2015 IEEE Photon. Techn. Lett. 271

    [5]

    Lin W, Miao Y, Zhang H, Liu B, Liu Y, Song B 2015IEEE Photon. Techn. Lett. 27 4

    [6]

    Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 2713

    [7]

    Li E, Wang X, Zhang C 2006 Appl. Phys. Lett. 899

    [8]

    Wu Q, Semenova Y, Wang P, Farrell G 2011 Opt. Express 199

    [9]

    Liu Y, Liu Z, Chen S, Han M 2015 IEEE Photon. Techn. Lett. 274

    [10]

    Yang R, Yu Y S, Chen C, Xue Y, Zhang X, Guo J, Wang C, Zhu F, Zhang B, Chen Q, Sun H 2013Opt. Lett. 38 19

    [11]

    Wang H, Pu S, Wang N, Dong S, Huang J 2013 Opt. Lett. 3819

    [12]

    Dong S, Pu S, Wang H 2014IEEE Photon. Technol. Lett. 26 22

    [13]

    Song B, Miao Y, Lin W, Zhang H, Liu B, Wu J, Liu H, Yan D 2014 IEEE Photon. Technol. Lett. 2622

    [14]

    Liu T, Chen Y, Han Q, Lu X 2014IEEE Photon. J. 6 6

    [15]

    Zhao Z, Tang M, Gao F, Zhang P, Duan L, Zhu B, Fu S, Ouyang J, Wei H, Li J, Shum P P, Liu D 2014Opt. Express 22 22

    [16]

    Wu J, Miao Y, Song B, Lin W, Zhang H, Zhang K, Liu B, Yao J 2014Appl. Phys. Lett. 104 25

    [17]

    Zu P, Chan C C, Wen S L, Hu L, Jin Y, Liew H F, Chen L H, Wong W C, Dong X 2012IEEE Photon. J. 4 2

    [18]

    Dong S, Pu S, Huang J 2013Appl. Phys. Lett. 103 11

    [19]

    Pu S, Dong S 2014IEEE Photon. J. 6 4

    [20]

    Deng M, Liu D, Li D 2014Sens. Actuat. A:Phys. 211 5

    [21]

    Miao Y, Wu J, Lin W, Song B, Zhang H, Zhang K, Liu B, Yao J 2014J. Lightwave Technol. 32 23

    [22]

    Li L, Li X, Xie Z, Liu D 2012Opt. Express 20 10

    [23]

    Geng Y, Li X, Tan X, Deng Y, Yu Y 2011IEEE Sens. J. 11 11

    [24]

    Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y 2008Opt. Express 16 15

    [25]

    Zhao Y, Cai L, Li X G 2015IEEE Photon. Technol. Lett. 27 12

    [26]

    Coelho L, Frazo O, Kobelke J, Schuster K, Santos J L 2011Opt. Eng. 50 10

    [27]

    Zhao Y, Wu D, Lv R Q, Ying Y 2014IEEE Trans. Magn. 50 8

  • [1]

    Zhao Y, Hu T 2010Sensors and Detection Technology (Beijing:China Machine Press) p106(in Chinese)[赵勇, 胡涛2010传感器与检测技术(北京:机械工业出版社)第106页]

    [2]

    Zhao Y, L R Q, Wang D, Wang Q 2015IEEE Photon. Techn. Lett. 27 1

    [3]

    Layeghi A, Latifi H, Frazao O 2014 IEEE Photon. Technol. Lett. 2619

    [4]

    Zhao Y, Wu D, L R Q 2015 IEEE Photon. Techn. Lett. 271

    [5]

    Lin W, Miao Y, Zhang H, Liu B, Liu Y, Song B 2015IEEE Photon. Techn. Lett. 27 4

    [6]

    Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 2713

    [7]

    Li E, Wang X, Zhang C 2006 Appl. Phys. Lett. 899

    [8]

    Wu Q, Semenova Y, Wang P, Farrell G 2011 Opt. Express 199

    [9]

    Liu Y, Liu Z, Chen S, Han M 2015 IEEE Photon. Techn. Lett. 274

    [10]

    Yang R, Yu Y S, Chen C, Xue Y, Zhang X, Guo J, Wang C, Zhu F, Zhang B, Chen Q, Sun H 2013Opt. Lett. 38 19

    [11]

    Wang H, Pu S, Wang N, Dong S, Huang J 2013 Opt. Lett. 3819

    [12]

    Dong S, Pu S, Wang H 2014IEEE Photon. Technol. Lett. 26 22

    [13]

    Song B, Miao Y, Lin W, Zhang H, Liu B, Wu J, Liu H, Yan D 2014 IEEE Photon. Technol. Lett. 2622

    [14]

    Liu T, Chen Y, Han Q, Lu X 2014IEEE Photon. J. 6 6

    [15]

    Zhao Z, Tang M, Gao F, Zhang P, Duan L, Zhu B, Fu S, Ouyang J, Wei H, Li J, Shum P P, Liu D 2014Opt. Express 22 22

    [16]

    Wu J, Miao Y, Song B, Lin W, Zhang H, Zhang K, Liu B, Yao J 2014Appl. Phys. Lett. 104 25

    [17]

    Zu P, Chan C C, Wen S L, Hu L, Jin Y, Liew H F, Chen L H, Wong W C, Dong X 2012IEEE Photon. J. 4 2

    [18]

    Dong S, Pu S, Huang J 2013Appl. Phys. Lett. 103 11

    [19]

    Pu S, Dong S 2014IEEE Photon. J. 6 4

    [20]

    Deng M, Liu D, Li D 2014Sens. Actuat. A:Phys. 211 5

    [21]

    Miao Y, Wu J, Lin W, Song B, Zhang H, Zhang K, Liu B, Yao J 2014J. Lightwave Technol. 32 23

    [22]

    Li L, Li X, Xie Z, Liu D 2012Opt. Express 20 10

    [23]

    Geng Y, Li X, Tan X, Deng Y, Yu Y 2011IEEE Sens. J. 11 11

    [24]

    Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y 2008Opt. Express 16 15

    [25]

    Zhao Y, Cai L, Li X G 2015IEEE Photon. Technol. Lett. 27 12

    [26]

    Coelho L, Frazo O, Kobelke J, Schuster K, Santos J L 2011Opt. Eng. 50 10

    [27]

    Zhao Y, Wu D, Lv R Q, Ying Y 2014IEEE Trans. Magn. 50 8

  • [1] 史慧敏, 莫润阳, 王成会. 磁流体管内“泡对”在磁声复合场中的振荡行为. 物理学报, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [2] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [3] 李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海. 基于色散效应的光纤光栅高速高精度解调方法研究. 物理学报, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [4] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [5] 王闵, 刘复飞, 周贤, 戴玉堂, 杨明红. 基于光纤微结构加工和敏感材料物理融合的光纤传感技术. 物理学报, 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [6] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [7] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [8] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [9] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [10] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [11] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [12] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [13] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [14] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [15] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [16] 刘桂雄, 蒲尧萍, 徐 晨. 磁流体中Helmholtz和Kelvin力的界定. 物理学报, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [17] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  3740
  • PDF下载量:  634
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-09
  • 修回日期:  2016-12-07
  • 刊出日期:  2017-04-05

基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器

  • 1. 东北大学信息科学与工程学院, 沈阳 110819;
  • 2. 东北大学 流程工业综合自动化国家重点实验室, 沈阳 110819
  • 通信作者: 赵勇, zhaoyong@ise.neu.edu.cn
    基金项目: 国家自然科学基金(批准号:61425003,61273059,51607028)资助的课题.

摘要: 提出了一种基于空芯光纤模间干涉原理的环境温度和磁场双参数传感器,为了使光入射进空芯光纤壁中,将空芯光纤与单模光纤错位熔接,传感部分用毛细玻璃管封装,空芯光纤内外分别填充酒精和磁流体.除了光纤材料的热光效应和热膨胀效应外,环境温度变化会引起两种溶液折射率的变化,而磁场变化仅引起空芯光纤外的磁流体折射率变化.理论计算可知空芯光纤壁中可支持多个模式传输并相互干涉,各模式传输相位对内外溶液折射率变化灵敏程度不同.因此,干涉谱中两个含有不同模式成分的波谷,即波谷1和波谷2,它们的漂移可以作为指示信号,通过建立敏感矩阵可同时解调出周围环境温度与磁场的变化.实验中,在2858℃范围内,温度传感灵敏度可达-468 pm/℃;在0169 Oe范围内磁场传感灵敏度可达82 pm/Oe.该传感器具有高灵敏度与高机械强度,并且能够实现温度与磁场的同时测量,有效消除了温度波动对磁场测量信号的干扰.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回