搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感应式脉冲推力器中等离子体加速数值研究

成玉国 夏广庆

引用本文:
Citation:

感应式脉冲推力器中等离子体加速数值研究

成玉国, 夏广庆

Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster

Cheng Yu-Guo, Xia Guang-Qing
PDF
导出引用
  • 为了分析感应式脉冲放电等离子体推力器中时变电磁场作用下等离子体的放电参数分布及其随着磁场强度变化的影响,引入了利用双曲型散度清除方法的二维轴对称瞬态等离子体流动的磁流体力学数值模型.计算结果表明,随着输入能量的增加,等离子体团出现速度峰值的时刻提前,等离子体中同时存在的异号电流环对其加速具有阻滞作用.等离子体的加速效率随着磁场强度非线性增大,磁场大于某一临界值时(几何构型下峰值磁场强度大于0.45 T),有限空间情况下等离子体的加速效率获得显著提高.
    The pulsed inductive discharge ionizes the neutral gas and accelerates the plasma efficiently, and is accompanied by complicated phenomena during the discharge process. In order to study the transient flow field characteristics and the variations of the main flow parameters (e.g., velocity, density, pressure, etc.) with the magnetic induction intensity of the inductive pulsed plasma, the two-dimensional axisymmetric unsteady magnetohydrodynamic numerical model is introduced by employing the hyperbolic divergence cleaning method. The plasma is excited by the single pulse energy varying in the sine waveform with a period of 10 s, and the flow field of the peak magnetic induction intensity ranging from 0.1 T to 0.55 T, is calculated. The results show that the high density and speed region gradually moves forward and away from the coil, leaving the low density and speed plasma behind, meanwhile, the high temperature region is near the coil throughoutthe discharge, and the inductive magnetic field leads in the phase, compared with the flow parameters, which indicates the effective permeation of the pulsed energy into the neutral gas and the plasma. As the input single pulse energy increases, the maximum axial velocity of the plasma increases and the time at which the flow velocity reaches a peak value moves up. The current sheets of the same direction, which are located on the surface of the induction coil at the beginning, appear as the discharge initiates and moves forward with the influenced flow domain expanding as the process goes on, and an opposite sign current sheet grows when the time passes through the first quarter of the sine period, which is also near the surface of the coil and heats the low-density plasma and the neutral gas. The opposite direction current sheets slow down the velocity of the plasmoid. Due to the nonlinear property of the coil-plasma interaction, the acceleration efficiency of the induction coil improves irregularly as the magnetic induction intensity increases, which grows slowly at a low level, and when the intensity reaches a certain critical value, for the configuration studied in this work the particular value is 0.45 T, the acceleration efficiency increases significantly, indicating that a larger part of the pulsed energy is converted into the plasma kinetic energy.
      通信作者: 成玉国, hlcyg@126.com
    • 基金项目: 国家自然科学基金(批准号:11675040)和中央高校基本科研业务费专项资金(批准号:DUT15ZD(G)01)资助的课题.
      Corresponding author: Cheng Yu-Guo, hlcyg@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675040) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT15ZD(G)01).
    [1]

    Choueiri E Y, Polzin K A 2006 J. Prop. Power 22 3

    [2]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese)[成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203]

    [3]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Chin. Phys. B 23 105202

    [4]

    Mikellides P G, Neilly C 2007 J. Prop. Power 23 1

    [5]

    Polzin K A 2011 J. Prop. Power 27 3

    [6]

    Jahn R G 1968 Physics of Electric Propulsion (New York:McGraw-Hill) p268

    [7]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

    [8]

    Mikellides P G, Villarreal J K 2007 J. Appl. Phys. 102 10

    [9]

    Dailey C L, Lovberg R H 1993 NASA CR-1993-191155

    [10]

    Mikellides P G, Turchi P J, Roderick N F 2000 J. Prop. Power 16 5

    [11]

    Xie Z H 2013 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[谢泽华 2015 博士学位论文 (长沙:国防科学技术大学)]

    [12]

    Polzin K A, Sankaran K, Ritchie A G, Reneau J P 2013 J. Phys. D:Appl. Phys. 46 475201

    [13]

    Tian Z Y 2008 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[田正雨2008博士学位论文(长沙:国防科学技术大学)]

    [14]

    Li X K 2011 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[李小康2011博士学位论文(长沙:国防科学技术大学)]

    [15]

    Kim S, Soogab L, Kyu H K 2008 J. Comput. Phys. 227 8

    [16]

    Dedner A, Kemm F, Krner D, Munz C D, Schnitzer T, Wesenberg M 2002 J. Comput. Phys. 175 2

    [17]

    Dedner A 2003 Ph. D. Dissertation (Freiburg im Breisgau:Alert Ludwigs-Universitt Freiburg)

    [18]

    Yan C 2006 Computational Fluid Dynamic (Beijing:Beihang University Press) pp254-258(in Chinese)[阎超2006计算流体力学方法及其应用(北京:北京航空航天大学出版社)第254258页]

    [19]

    Kim K H, Kim C 2005 J. Comput. Phys. 208 2

    [20]

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing:Science Press) pp48-59(in Chinese)[陈熙2009热等离子体传热与流动(北京:科学出版社)第4859页]

    [21]

    Калантаров П Л, Неитлчы Л А(translated by Chen T M, Liu B A, Luo Y L, Zhang Y H) 1992 Inductance Calculation Handbook (Beijing:Mechanism Industry Press) pp1-9(in Chinese)[卡兰塔罗夫П Л, 采伊特林Л А 著(陈汤铭, 刘保安, 罗应力, 张奕黄译) 1992电感计算手册(北京:机械工业出版社)第19页]

    [22]

    Che B X 2015 M. S. Thesis (Changsha:National University of Defense Technology) (in Chinese)[车碧轩2015硕士学位论文(长沙:国防科学技术大学)]

    [23]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

  • [1]

    Choueiri E Y, Polzin K A 2006 J. Prop. Power 22 3

    [2]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese)[成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203]

    [3]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Chin. Phys. B 23 105202

    [4]

    Mikellides P G, Neilly C 2007 J. Prop. Power 23 1

    [5]

    Polzin K A 2011 J. Prop. Power 27 3

    [6]

    Jahn R G 1968 Physics of Electric Propulsion (New York:McGraw-Hill) p268

    [7]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

    [8]

    Mikellides P G, Villarreal J K 2007 J. Appl. Phys. 102 10

    [9]

    Dailey C L, Lovberg R H 1993 NASA CR-1993-191155

    [10]

    Mikellides P G, Turchi P J, Roderick N F 2000 J. Prop. Power 16 5

    [11]

    Xie Z H 2013 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[谢泽华 2015 博士学位论文 (长沙:国防科学技术大学)]

    [12]

    Polzin K A, Sankaran K, Ritchie A G, Reneau J P 2013 J. Phys. D:Appl. Phys. 46 475201

    [13]

    Tian Z Y 2008 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[田正雨2008博士学位论文(长沙:国防科学技术大学)]

    [14]

    Li X K 2011 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[李小康2011博士学位论文(长沙:国防科学技术大学)]

    [15]

    Kim S, Soogab L, Kyu H K 2008 J. Comput. Phys. 227 8

    [16]

    Dedner A, Kemm F, Krner D, Munz C D, Schnitzer T, Wesenberg M 2002 J. Comput. Phys. 175 2

    [17]

    Dedner A 2003 Ph. D. Dissertation (Freiburg im Breisgau:Alert Ludwigs-Universitt Freiburg)

    [18]

    Yan C 2006 Computational Fluid Dynamic (Beijing:Beihang University Press) pp254-258(in Chinese)[阎超2006计算流体力学方法及其应用(北京:北京航空航天大学出版社)第254258页]

    [19]

    Kim K H, Kim C 2005 J. Comput. Phys. 208 2

    [20]

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing:Science Press) pp48-59(in Chinese)[陈熙2009热等离子体传热与流动(北京:科学出版社)第4859页]

    [21]

    Калантаров П Л, Неитлчы Л А(translated by Chen T M, Liu B A, Luo Y L, Zhang Y H) 1992 Inductance Calculation Handbook (Beijing:Mechanism Industry Press) pp1-9(in Chinese)[卡兰塔罗夫П Л, 采伊特林Л А 著(陈汤铭, 刘保安, 罗应力, 张奕黄译) 1992电感计算手册(北京:机械工业出版社)第19页]

    [22]

    Che B X 2015 M. S. Thesis (Changsha:National University of Defense Technology) (in Chinese)[车碧轩2015硕士学位论文(长沙:国防科学技术大学)]

    [23]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

  • [1] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [2] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] 杨玉晶, 赵汗青, 王鹏飞, 林婷婷. 绝热脉冲磁共振地下水探测技术数值模拟及影响分析. 物理学报, 2020, 69(12): 123301. doi: 10.7498/aps.69.20200015
    [4] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [5] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [6] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [7] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [8] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [9] 黄培培, 刘大刚, 刘腊群, 王辉辉, 夏梦局, 陈颖. 单路脉冲功率真空装置的三维数值模拟研究. 物理学报, 2013, 62(19): 192901. doi: 10.7498/aps.62.192901
    [10] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟 . 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [11] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟. 物理学报, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [12] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [13] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究. 物理学报, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [14] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [15] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [16] 周国成, 曹晋滨, 王德驹, 蔡春林. 无碰撞等离子体电流片中的低频波. 物理学报, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [17] 袁行球, 李 辉, 赵太泽, 王 飞, 俞国扬, 郭文康, 须 平. 直流电弧等离子体炬的特性研究. 物理学报, 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [18] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟. 物理学报, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [19] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究. 物理学报, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
    [20] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟. 物理学报, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
计量
  • 文章访问数:  3337
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-12
  • 修回日期:  2017-01-10
  • 刊出日期:  2017-04-05

感应式脉冲推力器中等离子体加速数值研究

  • 1. 中国人民解放军91550部队91分队, 大连 116023;
  • 2. 大连理工大学, 工业装备结构分析国家重点实验室, 大连 116024
  • 通信作者: 成玉国, hlcyg@126.com
    基金项目: 国家自然科学基金(批准号:11675040)和中央高校基本科研业务费专项资金(批准号:DUT15ZD(G)01)资助的课题.

摘要: 为了分析感应式脉冲放电等离子体推力器中时变电磁场作用下等离子体的放电参数分布及其随着磁场强度变化的影响,引入了利用双曲型散度清除方法的二维轴对称瞬态等离子体流动的磁流体力学数值模型.计算结果表明,随着输入能量的增加,等离子体团出现速度峰值的时刻提前,等离子体中同时存在的异号电流环对其加速具有阻滞作用.等离子体的加速效率随着磁场强度非线性增大,磁场大于某一临界值时(几何构型下峰值磁场强度大于0.45 T),有限空间情况下等离子体的加速效率获得显著提高.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回